- Add spam_score_type to AiSpamSerializer for better integration with reviewables.
- Introduce a custom filter for detecting AI spam false negatives in moderation workflows.
- Refactor spam report generation to improve identification of false negatives.
- Add tests to verify the custom filter and its behavior.
- Introduce links for all spam counts in report
In a previous refactor, we moved the responsibility of querying and storing embeddings into the `Schema` class. Now, it's time for embedding generation.
The motivation behind these changes is to isolate vector characteristics in simple objects to later replace them with a DB-backed version, similar to what we did with LLM configs.
* REFACTOR: A Simpler way of interacting with embeddings' tables.
This change adds a new abstraction called `Schema`, which acts as a repository that supports the same DB features `VectorRepresentation::Base` has, with the exception that removes the need to have duplicated methods per embeddings table.
It is also a bit more flexible when performing a similarity search because you can pass it a block that gives you access to the builder, allowing you to add multiple joins/where conditions.
In this PR, we added functionality to hide the admin header for edit/new actions - https://github.com/discourse/discourse/pull/30175
To make it work properly, we have to rename `show` to `edit` which is also a more accurate name.
This introduces a comprehensive spam detection system that uses LLM models
to automatically identify and flag potential spam posts. The system is
designed to be both powerful and configurable while preventing false positives.
Key Features:
* Automatically scans first 3 posts from new users (TL0/TL1)
* Creates dedicated AI flagging user to distinguish from system flags
* Tracks false positives/negatives for quality monitoring
* Supports custom instructions to fine-tune detection
* Includes test interface for trying detection on any post
Technical Implementation:
* New database tables:
- ai_spam_logs: Stores scan history and results
- ai_moderation_settings: Stores LLM config and custom instructions
* Rate limiting and safeguards:
- Minimum 10-minute delay between rescans
- Only scans significant edits (>10 char difference)
- Maximum 3 scans per post
- 24-hour maximum age for scannable posts
* Admin UI features:
- Real-time testing capabilities
- 7-day statistics dashboard
- Configurable LLM model selection
- Custom instruction support
Security and Performance:
* Respects trust levels - only scans TL0/TL1 users
* Skips private messages entirely
* Stops scanning users after 3 successful public posts
* Includes comprehensive test coverage
* Maintains audit log of all scan attempts
---------
Co-authored-by: Keegan George <kgeorge13@gmail.com>
Co-authored-by: Martin Brennan <martin@discourse.org>
* UX: Improve rough edges of AI usage page
* Ensure all text uses I18n
* Change from <button> usage to <DButton>
* Use <AdminConfigAreaCard> in place of custom card styles
* Format numbers nicely using our number format helper,
show full values on hover using title attr
* Ensure 0 is always shown for counters, instead of being blank
* FEATURE: Load usage data after page load
Use ConditionalLoadingSpinner to hide load of usage
data, this prevents us hanging on page load with a white
screen.
* UX: Split users table, and add empty placeholders and page subheader
* DEV: Test fix
Add support for versioned artifacts with improved diff handling
* Add versioned artifacts support allowing artifacts to be updated and tracked
- New `ai_artifact_versions` table to store version history
- Support for updating artifacts through a new `UpdateArtifact` tool
- Add version-aware artifact rendering in posts
- Include change descriptions for version tracking
* Enhance artifact rendering and security
- Add support for module-type scripts and external JS dependencies
- Expand CSP to allow trusted CDN sources (unpkg, cdnjs, jsdelivr, googleapis)
- Improve JavaScript handling in artifacts
* Implement robust diff handling system (this is dormant but ready to use once LLMs catch up)
- Add new DiffUtils module for applying changes to artifacts
- Support for unified diff format with multiple hunks
- Intelligent handling of whitespace and line endings
- Comprehensive error handling for diff operations
* Update routes and UI components
- Add versioned artifact routes
- Update markdown processing for versioned artifacts
Also
- Tweaks summary prompt
- Improves upload support in custom tool to also provide urls
- Added a new admin interface to track AI usage metrics, including tokens, features, and models.
- Introduced a new route `/admin/plugins/discourse-ai/ai-usage` and supporting API endpoint in `AiUsageController`.
- Implemented `AiUsageSerializer` for structuring AI usage data.
- Integrated CSS stylings for charts and tables under `stylesheets/modules/llms/common/usage.scss`.
- Enhanced backend with `AiApiAuditLog` model changes: added `cached_tokens` column (implemented with OpenAI for now) with relevant DB migration and indexing.
- Created `Report` module for efficient aggregation and filtering of AI usage metrics.
- Updated AI Bot title generation logic to log correctly to user vs bot
- Extended test coverage for the new tracking features, ensuring data consistency and access controls.
* FIX: automatically bust cache for share ai assets
CDNs can be configured to strip query params in Discourse
hosting. This is generally safe, but in this case we had
no way of busting the cache using the path.
New design properly caches and properly breaks busts the
cache if asset changes so we don't need to worry about versions
* one day I will set up conditional lint on save :)
1. Keep source in a "details" block after rendered so it does
not overwhelm users
2. Ensure artifacts are never indexed by robots
3. Cache break our CSS that changed recently
It's important that artifacts are never given 'same origin' access to the forum domain, so that they cannot access cookies, or make authenticated HTTP requests. So even when visiting the URL directly, we need to wrap them in a sandboxed iframe.
This is a significant PR that introduces AI Artifacts functionality to the discourse-ai plugin along with several other improvements. Here are the key changes:
1. AI Artifacts System:
- Adds a new `AiArtifact` model and database migration
- Allows creation of web artifacts with HTML, CSS, and JavaScript content
- Introduces security settings (`strict`, `lax`, `disabled`) for controlling artifact execution
- Implements artifact rendering in iframes with sandbox protection
- New `CreateArtifact` tool for AI to generate interactive content
2. Tool System Improvements:
- Adds support for partial tool calls, allowing incremental updates during generation
- Better handling of tool call states and progress tracking
- Improved XML tool processing with CDATA support
- Fixes for tool parameter handling and duplicate invocations
3. LLM Provider Updates:
- Updates for Anthropic Claude models with correct token limits
- Adds support for native/XML tool modes in Gemini integration
- Adds new model configurations including Llama 3.1 models
- Improvements to streaming response handling
4. UI Enhancements:
- New artifact viewer component with expand/collapse functionality
- Security controls for artifact execution (click-to-run in strict mode)
- Improved dialog and response handling
- Better error management for tool execution
5. Security Improvements:
- Sandbox controls for artifact execution
- Public/private artifact sharing controls
- Security settings to control artifact behavior
- CSP and frame-options handling for artifacts
6. Technical Improvements:
- Better post streaming implementation
- Improved error handling in completions
- Better memory management for partial tool calls
- Enhanced testing coverage
7. Configuration:
- New site settings for artifact security
- Extended LLM model configurations
- Additional tool configuration options
This PR significantly enhances the plugin's capabilities for generating and displaying interactive content while maintaining security and providing flexible configuration options for administrators.
Implement streaming tool call implementation for Anthropic and Open AI.
When calling:
llm.generate(..., partial_tool_calls: true) do ...
Partials may contain ToolCall instances with partial: true, These tool calls are partially populated with json partially parsed.
So for example when performing a search you may get:
ToolCall(..., {search: "hello" })
ToolCall(..., {search: "hello world" })
The library used to parse json is:
https://github.com/dgraham/json-stream
We use a fork cause we need access to the internal buffer.
This prepares internals to perform partial tool calls, but does not implement it yet.
This re-implements tool support in DiscourseAi::Completions::Llm #generate
Previously tool support was always returned via XML and it would be the responsibility of the caller to parse XML
New implementation has the endpoints return ToolCall objects.
Additionally this simplifies the Llm endpoint interface and gives it more clarity. Llms must implement
decode, decode_chunk (for streaming)
It is the implementers responsibility to figure out how to decode chunks, base no longer implements. To make this easy we ship a flexible json decoder which is easy to wire up.
Also (new)
Better debugging for PMs, we now have a next / previous button to see all the Llm messages associated with a PM
Token accounting is fixed for vllm (we were not correctly counting tokens)
The custom field "discourse_ai_bypass_ai_reply" was added so
we can signal the post created hook to bypass replying even
if it thinks it should.
Otherwise there are cases where we double answer user questions
leading to much confusion.
This also slightly refactors code making the controller smaller
The new `/admin/plugins/discourse-ai/ai-personas/stream-reply.json` was added.
This endpoint streams data direct from a persona and can be used
to access a persona from remote systems leaving a paper trail in
PMs about the conversation that happened
This endpoint is only accessible to admins.
---------
Co-authored-by: Gabriel Grubba <70247653+Grubba27@users.noreply.github.com>
Co-authored-by: Keegan George <kgeorge13@gmail.com>
This changeset contains 4 fixes:
1. We were allowing running tests on unsaved tools,
this is problematic cause uploads are not yet associated or indexed
leading to confusing results. We now only show the test button when
tool is saved.
2. We were not properly scoping rag document fragements, this
meant that personas and ai tools could get results from other
unrelated tools, just to be filtered out later
3. index.search showed options as "optional" but implementation
required the second option
4. When testing tools searching through document fragments was
not working at all cause we did not properly load the tool
This changeset:
1. Corrects some issues with "force_default_llm" not applying
2. Expands the LLM list page to show LLM usage
3. Clarifies better what "enabling a bot" on an llm means (you get it in the selector)
Splits persona permissions so you can allow a persona on:
- chat dms
- personal messages
- topic mentions
- chat channels
(any combination is allowed)
Previously we did not have this flexibility.
Additionally, adds the ability to "tether" a language model to a persona so it will always be used by the persona. This allows people to use a cheaper language model for one group of people and more expensive one for other people
This introduces another configuration that allows operators to
limit the amount of interactions with forced tool usage.
Forced tools are very handy in initial llm interactions, but as
conversation progresses they can hinder by slowing down stuff
and adding confusion.
* FEATURE: allows forced LLM tool use
Sometimes we need to force LLMs to use tools, for example in RAG
like use cases we may want to force an unconditional search.
The new framework allows you backend to force tool usage.
Front end commit to follow
* UI for forcing tools now works, but it does not react right
* fix bugs
* fix tests, this is now ready for review
This PR updates the rate limits for AI helper so that image caption follows a specific rate limit of 20 requests per minute. This should help when uploading multiple files that need to be captioned. This PR also updates the UI so that it shows toast message with the extracted error message instead of having a blocking `popupAjaxError` error dialog.
---------
Co-authored-by: Rafael dos Santos Silva <xfalcox@gmail.com>
Co-authored-by: Penar Musaraj <pmusaraj@gmail.com>
This allows custom tools access to uploads and sophisticated searches using embedding.
It introduces:
- A shared front end for listing and uploading files (shared with personas)
- Backend implementation of index.search function within a custom tool.
Custom tools now may search through uploaded files
function invoke(params) {
return index.search(params.query)
}
This means that RAG implementers now may preload tools with knowledge and have high fidelity over
the search.
The search function support
specifying max results
specifying a subset of files to search (from uploads)
Also
- Improved documentation for tools (when creating a tool a preamble explains all the functionality)
- uploads were a bit finicky, fixed an edge case where the UI would not show them as updated
Restructures LLM config page so it is far clearer.
Also corrects bugs around adding LLMs and having LLMs not editable post addition
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
Polymorphic RAG means that we will be able to access RAG fragments both from AiPersona and AiCustomTool
In turn this gives us support for richer RAG implementations.
Embedding search is rate limited due to potentially expensive
hyde operation (which require LLM access).
Embedding generally is very cheap compared to it. (usually 100x cheaper)
This raises the limit to 100 per minute for embedding searches,
while keeping the old 4 per minute for HyDE powered search.
This allows callers of embedding based search to bypass hyde.
Hyde will expand the search term using an LLM, but if an LLM is
performing the search we can skip this expansion.
It also introduced some tests for the controller which we did not have
* FEATURE: LLM Triage support for systemless models.
This change adds support for OSS models without support for system messages. LlmTriage's system message field is no longer mandatory. We now send the post contents in a separate user message.
* Models using Ollama can also disable system prompts
When navigating between topic we were not correctly resetting
internal state for summarization. This leads to a situation where
incorrect summaries can be displayed to users and wrong summaries
can be displayed.
Additionally our controller for grabbing summaries was always
streaming results via message bus, which could be delayed when
sidekiq is overloaded. We now will return the cached summary
right away if it is available direct from REST endpoint.
Creating a new model, either manually or from presets, doesn't initialize the `provider_params` object, meaning their custom params won't persist.
Additionally, this change adds some validations for Bedrock params, which are mandatory, and a clear message when a completion fails because we cannot build the URL.
- Validate fields to reduce the chance of breaking features by a misconfigured model.
- Fixed a bug where the URL might get deleted during an update.
- Display a warning when a model is currently in use.
This allows summary to use the new LLM models and migrates of API key based model selection
Claude 3.5 etc... all work now.
---------
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
* FIX: Use base64 encoded images in AI Image Caption via LLaVa
This fixed a regression introduced in #646 where we started sending
schemaless URLs for our LLaVa service, which doesn't handle it well.
Moving to base64 encoded images solves:
- The service needing to download images
Now the service running LLaVa doesn't need internet access
- Secure uploads compat
Every image is treated the same, less branching for secure uploads
- Image Size problems
Discourse is now responsible for ensure a max size for images
- Troublesome dev env
Previously to this commit you would need a dev env that was internet
acessible to use llava image captions
Introduces custom AI tools functionality.
1. Why it was added:
The PR adds the ability to create, manage, and use custom AI tools within the Discourse AI system. This feature allows for more flexibility and extensibility in the AI capabilities of the platform.
2. What it does:
- Introduces a new `AiTool` model for storing custom AI tools
- Adds CRUD (Create, Read, Update, Delete) operations for AI tools
- Implements a tool runner system for executing custom tool scripts
- Integrates custom tools with existing AI personas
- Provides a user interface for managing custom tools in the admin panel
3. Possible use cases:
- Creating custom tools for specific tasks or integrations (stock quotes, currency conversion etc...)
- Allowing administrators to add new functionalities to AI assistants without modifying core code
- Implementing domain-specific tools for particular communities or industries
4. Code structure:
The PR introduces several new files and modifies existing ones:
a. Models:
- `app/models/ai_tool.rb`: Defines the AiTool model
- `app/serializers/ai_custom_tool_serializer.rb`: Serializer for AI tools
b. Controllers:
- `app/controllers/discourse_ai/admin/ai_tools_controller.rb`: Handles CRUD operations for AI tools
c. Views and Components:
- New Ember.js components for tool management in the admin interface
- Updates to existing AI persona management components to support custom tools
d. Core functionality:
- `lib/ai_bot/tool_runner.rb`: Implements the custom tool execution system
- `lib/ai_bot/tools/custom.rb`: Defines the custom tool class
e. Routes and configurations:
- Updates to route configurations to include new AI tool management pages
f. Migrations:
- `db/migrate/20240618080148_create_ai_tools.rb`: Creates the ai_tools table
g. Tests:
- New test files for AI tool functionality and integration
The PR integrates the custom tools system with the existing AI persona framework, allowing personas to use both built-in and custom tools. It also includes safety measures such as timeouts and HTTP request limits to prevent misuse of custom tools.
Overall, this PR significantly enhances the flexibility and extensibility of the Discourse AI system by allowing administrators to create and manage custom AI tools tailored to their specific needs.
Co-authored-by: Martin Brennan <martin@discourse.org>
Having this as a callback prevents deploys of sites with a vLLM SRV configured and pending migrations. Additionally, this fixes a bug where we didn't delete/deactivate the companion user after deleting an LLM.