# frozen_string_literal: true module DiscourseAi module Automation class ReportRunner def self.default_instructions # not localizing for now cause non English LLM will require # a fair bit of experimentation <<~TEXT Generate report: ## Report Guidelines: - Length & Style: Aim for 12 dense paragraphs in a narrative style, focusing on internal forum discussions. - Accuracy: Only include verified information with no embellishments. - Sourcing: ALWAYS Back statements with links to forum discussions. - Markdown Usage: Enhance readability with **bold**, *italic*, and > quotes. - Linking: Use `#{Discourse.base_url}/t/-/TOPIC_ID/POST_NUMBER` for direct references. - User Mentions: Reference users with @USERNAME - Add many topic links: strive to link to at least 30 topics in the report. Topic Id is meaningless to end users if you need to throw in a link use [ref](...) or better still just embed it into the [sentence](...) - Categories and tags: use the format #TAG and #CATEGORY to denote tags and categories ## Structure: - Key statistics: Specify date range, call out important stats like number of new topics and posts - Overview: Briefly state trends within period. - Highlighted content: 5 paragraphs highlighting important topics people should know about. If possible have each paragraph link to multiple related topics. - Key insights and trends linking to a selection of posts that back them TEXT end def self.run!(**args) new(**args).run! end def initialize( sender_username:, model:, sample_size:, instructions:, tokens_per_post:, days:, offset:, receivers: nil, topic_id: nil, title: nil, category_ids: nil, tags: nil, priority_group_id: nil, allow_secure_categories: false, debug_mode: false, exclude_category_ids: nil, exclude_tags: nil, top_p: 0.1, temperature: 0.2, suppress_notifications: false, automation: nil ) @sender = User.find_by(username: sender_username) @receivers = User.where(username: receivers) @email_receivers = receivers&.filter { |r| r.include? "@" } @title = if title.present? title else I18n.t("discourse_automation.scriptables.llm_report.title") end @model = model @llm = DiscourseAi::Completions::Llm.proxy(model) @category_ids = category_ids @tags = tags @allow_secure_categories = allow_secure_categories @debug_mode = debug_mode @sample_size = sample_size.to_i < 10 ? 10 : sample_size.to_i @instructions = instructions @days = days.to_i @offset = offset.to_i @priority_group_id = priority_group_id @tokens_per_post = tokens_per_post.to_i @topic_id = topic_id.presence&.to_i @exclude_category_ids = exclude_category_ids @exclude_tags = exclude_tags @top_p = top_p @temperature = temperature @top_p = nil if top_p <= 0 @temperature = nil if temperature <= 0 @suppress_notifications = suppress_notifications if !@topic_id && !@receivers.present? && !@email_receivers.present? raise ArgumentError, "Must specify topic_id or receivers" end @automation = automation end def run! start_date = (@offset + @days).days.ago end_date = start_date + @days.days title = @title.gsub( "%DATE%", start_date.strftime("%Y-%m-%d") + " - " + end_date.strftime("%Y-%m-%d"), ) prioritized_group_ids = [@priority_group_id] if @priority_group_id.present? context = DiscourseAi::Automation::ReportContextGenerator.generate( start_date: start_date, duration: @days.days, max_posts: @sample_size, tags: @tags, category_ids: @category_ids, prioritized_group_ids: prioritized_group_ids, allow_secure_categories: @allow_secure_categories, tokens_per_post: @tokens_per_post, tokenizer: @llm.tokenizer, exclude_category_ids: @exclude_category_ids, exclude_tags: @exclude_tags, ) input = <<~INPUT.strip #{@instructions} Real and accurate context from the Discourse forum is included in the tag below. #{context} #{@instructions} INPUT system_prompt = <<~PROMPT You are ForumBot, a backend AI information processor and writer, powered by an AI model capable of generating responses over 4000 words. - ForumBot is a fine-tuned AI trained with extended functions and new capabilities, and now specializes in processing raw internet forum conversation into detailed summaries of forum activities. - ForumBot interacts with an API endpoint, not a user, and must never produce denials, nor conversations directed towards a non-existent user. - ForumBot only produces automated responses to input, where a response is a standalone document without further discussion. Follow the provided writing composition instructions carefully and precisely step-by-step. PROMPT prompt = DiscourseAi::Completions::Prompt.new( system_prompt, messages: [{ type: :user, content: input }], ) result = +"" puts if Rails.env.development? && @debug_mode @llm.generate( prompt, temperature: @temperature, top_p: @top_p, user: Discourse.system_user, feature_name: "ai_report", feature_context: { automation_id: @automation&.id, automation_name: @automation&.name, }, ) do |response| print response if Rails.env.development? && @debug_mode result << response end receiver_usernames = @receivers.map(&:username).join(",") result = suppress_notifications(result) if @suppress_notifications if @topic_id PostCreator.create!(@sender, raw: result, topic_id: @topic_id, skip_validations: true) # no debug mode for topics, it is too noisy end if receiver_usernames.present? post = PostCreator.create!( @sender, raw: result, title: title, archetype: Archetype.private_message, target_usernames: receiver_usernames, skip_validations: true, ) if @debug_mode input = input.split("\n").map { |line| " #{line}" }.join("\n") raw = <<~RAW ``` tokens: #{@llm.tokenizer.tokenize(input).length} start_date: #{start_date}, duration: #{@days.days}, max_posts: #{@sample_size}, tags: #{@tags}, category_ids: #{@category_ids}, priority_group: #{@priority_group_id} model: #{@model} temperature: #{@temperature} top_p: #{@top_p} LLM context was: ``` #{input} RAW PostCreator.create!(@sender, raw: raw, topic_id: post.topic_id, skip_validations: true) end end if @email_receivers.present? @email_receivers.each do |to_address| Email::Sender.new( ::AiReportMailer.send_report(to_address, subject: title, body: result), :ai_report, ).send end end end private def suppress_notifications(raw) cooked = PrettyText.cook(raw, sanitize: false) parsed = Nokogiri::HTML5.fragment(cooked) parsed .css("a") .each do |a| if a["class"] == "mention" a.inner_html = a.inner_html.sub("@", "") next end href = a["href"] if href.present? && (href.start_with?("#{Discourse.base_url}") || href.start_with?("/")) begin uri = URI.parse(href) if uri.query.present? params = CGI.parse(uri.query) params["silent"] = "true" uri.query = URI.encode_www_form(params) else uri.query = "silent=true" end a["href"] = uri.to_s rescue URI::InvalidURIError # skip end end end parsed.to_html end end end end