# frozen_string_literal: true module DiscourseAi module Embeddings module VectorRepresentations class BgeM3 < Base class << self def name "bge-m3" end def correctly_configured? DiscourseAi::Inference::HuggingFaceTextEmbeddings.configured? end def dependant_setting_names %w[ai_hugging_face_tei_endpoint_srv ai_hugging_face_tei_endpoint] end end def vector_from(text, asymetric: false) truncated_text = tokenizer.truncate(text, max_sequence_length - 2) DiscourseAi::Inference::HuggingFaceTextEmbeddings.perform!(truncated_text).first end def dimensions 1024 end def max_sequence_length 8192 end def id 8 end def version 1 end def pg_function "<#>" end def pg_index_type "vector_ip_ops" end def tokenizer DiscourseAi::Tokenizer::BgeM3Tokenizer end end end end end