# frozen_string_literal: true module DiscourseAi module Summarization module Strategies class FoldContent def initialize(completion_model) @llm = DiscourseAi::Completions::Llm.proxy(completion_model) raise "Invalid model provided for summarization strategy" if @llm.llm_model.nil? end attr_reader :llm def summarize(content, user, &on_partial_blk) opts = content.except(:contents) initial_chunks = rebalance_chunks( content[:contents].map { |c| { ids: [c[:id]], summary: format_content_item(c) } }, ) # Special case where we can do all the summarization in one pass. if initial_chunks.length == 1 { summary: summarize_single(initial_chunks.first[:summary], user, opts, &on_partial_blk), chunks: [], } else summarize_chunks(initial_chunks, user, opts, &on_partial_blk) end end def display_name llm_model&.name || "unknown model" end private def llm_model llm.llm_model end def summarize_chunks(chunks, user, opts, &on_partial_blk) # Safely assume we always have more than one chunk. summarized_chunks = summarize_in_chunks(chunks, user, opts) total_summaries_size = llm_model.tokenizer_class.size(summarized_chunks.map { |s| s[:summary].to_s }.join) if total_summaries_size < available_tokens # Chunks are small enough, we can concatenate them. { summary: concatenate_summaries( summarized_chunks.map { |s| s[:summary] }, user, &on_partial_blk ), chunks: summarized_chunks, } else # We have summarized chunks but we can't concatenate them yet. Split them into smaller summaries and summarize again. rebalanced_chunks = rebalance_chunks(summarized_chunks) summarize_chunks(rebalanced_chunks, user, opts, &on_partial_blk) end end def format_content_item(item) "(#{item[:id]} #{item[:poster]} said: #{item[:text]} " end def rebalance_chunks(chunks) section = { ids: [], summary: "" } chunks = chunks.reduce([]) do |sections, chunk| if llm_model.tokenizer_class.can_expand_tokens?( section[:summary], chunk[:summary], available_tokens, ) section[:summary] += chunk[:summary] section[:ids] = section[:ids].concat(chunk[:ids]) else sections << section section = chunk end sections end chunks << section if section[:summary].present? chunks end def summarize_single(text, user, opts, &on_partial_blk) prompt = summarization_prompt(text, opts) llm.generate(prompt, user: user, feature_name: "summarize", &on_partial_blk) end def summarize_in_chunks(chunks, user, opts) chunks.map do |chunk| prompt = summarization_prompt(chunk[:summary], opts) chunk[:summary] = llm.generate( prompt, user: user, max_tokens: 300, feature_name: "summarize", ) chunk end end def concatenate_summaries(summaries, user, &on_partial_blk) prompt = DiscourseAi::Completions::Prompt.new(<<~TEXT.strip) You are a summarization bot that effectively concatenates disjoint summaries, creating a cohesive narrative. The narrative you create is in the form of one or multiple paragraphs. Your reply MUST BE a single concatenated summary using the summaries I'll provide to you. I'm NOT interested in anything other than the concatenated summary, don't include additional text or comments. You understand and generate Discourse forum Markdown. You format the response, including links, using Markdown. TEXT prompt.push(type: :user, content: <<~TEXT.strip) THESE are the summaries, each one separated by a newline, all of them inside XML tags: #{summaries.join("\n")} TEXT llm.generate(prompt, user: user, &on_partial_blk) end def summarization_prompt(input, opts) insts = +<<~TEXT You are an advanced summarization bot that generates concise, coherent summaries of provided text. - Only include the summary, without any additional commentary. - You understand and generate Discourse forum Markdown; including links, _italics_, **bold**. - Maintain the original language of the text being summarized. - Aim for summaries to be 400 words or less. TEXT insts << <<~TEXT if opts[:resource_path] - Each post is formatted as ") " - Cite specific noteworthy posts using the format [NAME](#{opts[:resource_path]}/POST_NUMBER) - Example: link to the 3rd post by sam: [sam](#{opts[:resource_path]}/3) - Example: link to the 6th post by jane: [agreed with](#{opts[:resource_path]}/6) - Example: link to the 13th post by joe: [#13](#{opts[:resource_path]}/13) - When formatting usernames either use @USERNMAE OR [USERNAME](#{opts[:resource_path]}/POST_NUMBER) TEXT prompt = DiscourseAi::Completions::Prompt.new(insts.strip) if opts[:resource_path] prompt.push( type: :user, content: "Here are the posts inside XML tags:\n\n1) user1 said: I love Mondays 2) user2 said: I hate Mondays\n\nGenerate a concise, coherent summary of the text above maintaining the original language.", ) prompt.push( type: :model, content: "Two users are sharing their feelings toward Mondays. [user1](#{opts[:resource_path]}/1) hates them, while [user2](#{opts[:resource_path]}/2) loves them.", ) end prompt.push(type: :user, content: <<~TEXT.strip) #{opts[:content_title].present? ? "The discussion title is: " + opts[:content_title] + ".\n" : ""} Here are the posts, inside XML tags: #{input} Generate a concise, coherent summary of the text above maintaining the original language. TEXT prompt end def available_tokens # Reserve tokens for the response and the base prompt # ~500 words reserved_tokens = 700 llm_model.max_prompt_tokens - reserved_tokens end end end end end