# frozen_string_literal: true module ::Jobs class GenerateRagEmbeddings < ::Jobs::Base sidekiq_options queue: "low" def execute(args) return if (fragments = RagDocumentFragment.where(id: args[:fragment_ids].to_a)).empty? truncation = DiscourseAi::Embeddings::Strategies::Truncation.new vector_rep = DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(truncation) # generate_representation_from checks compares the digest value to make sure # the embedding is only generated once per fragment unless something changes. fragments.map { |fragment| vector_rep.generate_representation_from(fragment) } last_fragment = fragments.last ai_persona = last_fragment.ai_persona upload = last_fragment.upload indexing_status = RagDocumentFragment.indexing_status(ai_persona, [upload])[upload.id] RagDocumentFragment.publish_status(upload, indexing_status) end end end