# frozen_string_literal: true module DiscourseAi module Completions module Dialects class Dialect class << self def can_translate?(model_provider) raise NotImplemented end def all_dialects [ DiscourseAi::Completions::Dialects::ChatGpt, DiscourseAi::Completions::Dialects::Gemini, DiscourseAi::Completions::Dialects::Claude, DiscourseAi::Completions::Dialects::Command, DiscourseAi::Completions::Dialects::Ollama, DiscourseAi::Completions::Dialects::OpenAiCompatible, ] end def dialect_for(model_provider) dialects = [] if Rails.env.test? || Rails.env.development? dialects = [DiscourseAi::Completions::Dialects::Fake] end dialects = dialects.concat(all_dialects) dialect = dialects.find { |d| d.can_translate?(model_provider) } raise DiscourseAi::Completions::Llm::UNKNOWN_MODEL if !dialect dialect end end def initialize(generic_prompt, llm_model, opts: {}) @prompt = generic_prompt @opts = opts @llm_model = llm_model end VALID_ID_REGEX = /\A[a-zA-Z0-9_]+\z/ def can_end_with_assistant_msg? false end def native_tool_support? false end def vision_support? llm_model.vision_enabled? end def tools @tools ||= tools_dialect.translated_tools end def tool_choice prompt.tool_choice end def translate messages = prompt.messages # Some models use an assistant msg to improve long-context responses. if messages.last[:type] == :model && can_end_with_assistant_msg? messages = messages.dup messages.pop end trim_messages(messages).map { |msg| send("#{msg[:type]}_msg", msg) }.compact end def conversation_context raise NotImplemented end def max_prompt_tokens raise NotImplemented end attr_reader :prompt private attr_reader :opts, :llm_model def trim_messages(messages) prompt_limit = max_prompt_tokens current_token_count = 0 message_step_size = (prompt_limit / 25).to_i * -1 trimmed_messages = [] range = (0..-1) if messages.dig(0, :type) == :system max_system_tokens = prompt_limit * 0.6 system_message = messages[0] system_size = calculate_message_token(system_message) if system_size > max_system_tokens system_message[:content] = tokenizer.truncate( system_message[:content], max_system_tokens, ) end trimmed_messages << system_message current_token_count += calculate_message_token(system_message) range = (1..-1) end reversed_trimmed_msgs = [] messages[range].reverse.each do |msg| break if current_token_count >= prompt_limit message_tokens = calculate_message_token(msg) dupped_msg = msg.dup # Don't trim tool call metadata. if msg[:type] == :tool_call break if current_token_count + message_tokens + per_message_overhead > prompt_limit current_token_count += message_tokens + per_message_overhead reversed_trimmed_msgs << dupped_msg next end # Trimming content to make sure we respect token limit. while dupped_msg[:content].present? && message_tokens + current_token_count + per_message_overhead > prompt_limit dupped_msg[:content] = dupped_msg[:content][0..message_step_size] || "" message_tokens = calculate_message_token(dupped_msg) end next if dupped_msg[:content].blank? current_token_count += message_tokens + per_message_overhead reversed_trimmed_msgs << dupped_msg end reversed_trimmed_msgs.pop if reversed_trimmed_msgs.last&.dig(:type) == :tool trimmed_messages.concat(reversed_trimmed_msgs.reverse) end def per_message_overhead 0 end def calculate_message_token(msg) llm_model.tokenizer_class.size(msg[:content].to_s) end def tools_dialect @tools_dialect ||= DiscourseAi::Completions::Dialects::XmlTools.new(prompt.tools) end def system_msg(msg) raise NotImplemented end def assistant_msg(msg) raise NotImplemented end def user_msg(msg) raise NotImplemented end def tool_call_msg(msg) { role: "assistant", content: tools_dialect.from_raw_tool_call(msg) } end def tool_msg(msg) { role: "user", content: tools_dialect.from_raw_tool(msg) } end end end end end