# frozen_string_literal: true RSpec.describe Jobs::GenerateEmbeddings do subject(:job) { described_class.new } describe "#execute" do before do SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com" SiteSetting.ai_embeddings_enabled = true SiteSetting.ai_embeddings_model = "bge-large-en" end fab!(:topic) { Fabricate(:topic) } fab!(:post) { Fabricate(:post, post_number: 1, topic: topic) } let(:truncation) { DiscourseAi::Embeddings::Strategies::Truncation.new } let(:vector_rep) do DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(truncation) end it "works for topics" do expected_embedding = [0.0038493] * vector_rep.dimensions text = truncation.prepare_text_from( topic, vector_rep.tokenizer, vector_rep.max_sequence_length - 2, ) EmbeddingsGenerationStubs.discourse_service(vector_rep.name, text, expected_embedding) job.execute(target_id: topic.id, target_type: "Topic") expect(vector_rep.topic_id_from_representation(expected_embedding)).to eq(topic.id) end it "works for posts" do expected_embedding = [0.0038493] * vector_rep.dimensions text = truncation.prepare_text_from(post, vector_rep.tokenizer, vector_rep.max_sequence_length - 2) EmbeddingsGenerationStubs.discourse_service(vector_rep.name, text, expected_embedding) job.execute(target_id: post.id, target_type: "Post") expect(vector_rep.post_id_from_representation(expected_embedding)).to eq(post.id) end end end