# frozen_string_literal: true require "rails_helper" require_relative "../support/toxicity_inference_stubs" describe DiscourseAi::ChatMessageClassificator do fab!(:chat_message) { Fabricate(:chat_message) } let(:model) { DiscourseAi::Toxicity::ToxicityClassification.new } let(:classification) { described_class.new(model) } describe "#classify!" do before { ToxicityInferenceStubs.stub_chat_message_classification(chat_message, toxic: true) } it "stores the model classification data" do classification.classify!(chat_message) result = ClassificationResult.find_by(target_id: chat_message.id, classification_type: model.type) classification = result.classification.symbolize_keys expect(classification).to eq(ToxicityInferenceStubs.toxic_response) end it "flags the message when the model decides we should" do SiteSetting.ai_toxicity_flag_automatically = true classification.classify!(chat_message) expect(ReviewableAiChatMessage.where(target: chat_message).count).to eq(1) end it "doesn't flags the message if the model decides we shouldn't" do SiteSetting.ai_toxicity_flag_automatically = false classification.classify!(chat_message) expect(ReviewableAiChatMessage.where(target: chat_message).count).to be_zero end it "includes the model accuracy in the payload" do SiteSetting.ai_toxicity_flag_automatically = true classification.classify!(chat_message) reviewable = ReviewableAiChatMessage.find_by(target: chat_message) expect( reviewable.payload.dig("accuracies", SiteSetting.ai_toxicity_inference_service_api_model), ).to be_zero end end end