# frozen_string_literal: true module DiscourseAi module Embeddings module VectorRepresentations class MultilingualE5Large < Base class << self def name "multilingual-e5-large" end def correctly_configured? DiscourseAi::Inference::HuggingFaceTextEmbeddings.configured? || ( SiteSetting.ai_embeddings_discourse_service_api_endpoint_srv.present? || SiteSetting.ai_embeddings_discourse_service_api_endpoint.present? ) end def dependant_setting_names %w[ ai_hugging_face_tei_endpoint_srv ai_hugging_face_tei_endpoint ai_embeddings_discourse_service_api_key ai_embeddings_discourse_service_api_endpoint_srv ai_embeddings_discourse_service_api_endpoint ] end end def id 3 end def version 1 end def dimensions 1024 end def max_sequence_length 512 end def pg_function "<=>" end def tokenizer DiscourseAi::Tokenizer::MultilingualE5LargeTokenizer end def inference_client if DiscourseAi::Inference::HuggingFaceTextEmbeddings.configured? DiscourseAi::Inference::HuggingFaceTextEmbeddings.instance elsif SiteSetting.ai_embeddings_discourse_service_api_endpoint_srv.present? || SiteSetting.ai_embeddings_discourse_service_api_endpoint.present? DiscourseAi::Inference::DiscourseClassifier.instance(self.class.name) else raise "No inference endpoint configured" end end def prepare_text(text, asymetric: false) prepared_text = super(text, asymetric: asymetric) if prepared_text.present? && inference_client.class.name.include?("DiscourseClassifier") return "query: #{prepared_text}" end prepared_text end def prepare_target_text(target) prepared_text = super(target) if prepared_text.present? && inference_client.class.name.include?("DiscourseClassifier") return "query: #{prepared_text}" end prepared_text end end end end end