# frozen_string_literal: true RSpec.describe DiscourseAi::Embeddings::Strategies::Truncation do subject(:truncation) { described_class.new } describe "#prepare_query_text" do context "when using vector def from OpenAI" do before { SiteSetting.max_post_length = 100_000 } fab!(:topic) fab!(:post) do Fabricate(:post, topic: topic, raw: "Baby, bird, bird, bird\nBird is the word\n" * 500) end fab!(:post) do Fabricate( :post, topic: topic, raw: "Don't you know about the bird?\nEverybody knows that the bird is a word\n" * 400, ) end fab!(:post) { Fabricate(:post, topic: topic, raw: "Surfin' bird\n" * 800) } let(:vector_def) { DiscourseAi::Embeddings::VectorRepresentations::TextEmbeddingAda002.new } it "truncates a topic" do prepared_text = truncation.prepare_target_text(topic, vector_def) expect(vector_def.tokenizer.size(prepared_text)).to be <= vector_def.max_sequence_length end end end end