# frozen_string_literal: true describe DiscourseAi::Embeddings::EmbeddingsController do context "when performing a topic search" do before do SiteSetting.min_search_term_length = 3 SiteSetting.ai_embeddings_model = "text-embedding-3-small" DiscourseAi::Embeddings::SemanticSearch.clear_cache_for("test") SearchIndexer.enable end fab!(:category) fab!(:subcategory) { Fabricate(:category, parent_category_id: category.id) } fab!(:topic) fab!(:post) { Fabricate(:post, topic: topic) } fab!(:topic_in_subcategory) { Fabricate(:topic, category: subcategory) } fab!(:post_in_subcategory) { Fabricate(:post, topic: topic_in_subcategory) } def index(topic) vector = DiscourseAi::Embeddings::Vector.instance stub_request(:post, "https://api.openai.com/v1/embeddings").to_return( status: 200, body: JSON.dump({ data: [{ embedding: [0.1] * 1536 }] }), ) vector.generate_representation_from(topic) end def stub_embedding(query) embedding = [0.049382] * 1536 EmbeddingsGenerationStubs.openai_service(SiteSetting.ai_embeddings_model, query, embedding) end def create_api_key(user) key = ApiKey.create!(user: user) ApiKeyScope.create!(resource: "discourse_ai", action: "search", api_key_id: key.id) key end it "is able to make API requests using a scoped API key" do index(topic) query = "test" stub_embedding(query) user = topic.user api_key = create_api_key(user) get "/discourse-ai/embeddings/semantic-search.json?q=#{query}&hyde=false", headers: { "Api-Key" => api_key.key, "Api-Username" => user.username, } expect(response.status).to eq(200) expect(response.parsed_body["topics"].map { |t| t["id"] }).to contain_exactly(topic.id) end context "when rate limiting is enabled" do before { RateLimiter.enable } it "will rate limit correctly" do stub_const(subject.class, :MAX_HYDE_SEARCHES_PER_MINUTE, 1) do stub_const(subject.class, :MAX_SEARCHES_PER_MINUTE, 2) do query = "test #{SecureRandom.hex}" stub_embedding(query) get "/discourse-ai/embeddings/semantic-search.json?q=#{query}&hyde=false" expect(response.status).to eq(200) query = "test #{SecureRandom.hex}" stub_embedding(query) get "/discourse-ai/embeddings/semantic-search.json?q=#{query}&hyde=false" expect(response.status).to eq(200) query = "test #{SecureRandom.hex}" stub_embedding(query) get "/discourse-ai/embeddings/semantic-search.json?q=#{query}&hyde=false" expect(response.status).to eq(429) end end end end it "returns results correctly when performing a non Hyde search" do index(topic) index(topic_in_subcategory) query = "test" stub_embedding(query) get "/discourse-ai/embeddings/semantic-search.json?q=#{query}&hyde=false" expect(response.status).to eq(200) expect(response.parsed_body["topics"].map { |t| t["id"] }).to contain_exactly( topic.id, topic_in_subcategory.id, ) end it "is able to filter to a specific category (including sub categories)" do index(topic) index(topic_in_subcategory) query = "test category:#{category.slug}" stub_embedding("test") get "/discourse-ai/embeddings/semantic-search.json?q=#{query}&hyde=false" expect(response.status).to eq(200) expect(response.parsed_body["topics"].map { |t| t["id"] }).to eq([topic_in_subcategory.id]) end it "doesn't skip HyDE if the hyde param is missing" do assign_fake_provider_to(:ai_embeddings_semantic_search_hyde_model) index(topic) index(topic_in_subcategory) query = "test category:#{category.slug}" stub_embedding("test") DiscourseAi::Completions::Llm.with_prepared_responses(["Hyde #{query}"]) do get "/discourse-ai/embeddings/semantic-search.json?q=#{query}" expect(response.status).to eq(200) expect(response.parsed_body["topics"].map { |t| t["id"] }).to eq([topic_in_subcategory.id]) end end end end