# frozen_string_literal: true require_relative "endpoint_compliance" class OpenAiMock < EndpointMock def response(content, tool_call: false) message_content = if tool_call { tool_calls: [content] } else { content: content } end { id: "chatcmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S", object: "chat.completion", created: 1_678_464_820, model: "gpt-3.5-turbo-0301", usage: { prompt_tokens: 337, completion_tokens: 162, total_tokens: 499, }, choices: [ { message: { role: "assistant" }.merge(message_content), finish_reason: "stop", index: 0 }, ], } end def stub_response(prompt, response_text, tool_call: false) WebMock .stub_request(:post, "https://api.openai.com/v1/chat/completions") .with(body: request_body(prompt, tool_call: tool_call)) .to_return(status: 200, body: JSON.dump(response(response_text, tool_call: tool_call))) end def stream_line(delta, finish_reason: nil, tool_call: false) message_content = if tool_call { tool_calls: [delta] } else { content: delta } end +"data: " << { id: "chatcmpl-#{SecureRandom.hex}", object: "chat.completion.chunk", created: 1_681_283_881, model: "gpt-3.5-turbo-0301", choices: [{ delta: message_content }], finish_reason: finish_reason, index: 0, }.to_json end def stub_streamed_response(prompt, deltas, tool_call: false) chunks = deltas.each_with_index.map do |_, index| if index == (deltas.length - 1) stream_line(deltas[index], finish_reason: "stop_sequence", tool_call: tool_call) else stream_line(deltas[index], tool_call: tool_call) end end chunks = (chunks.join("\n\n") << "data: [DONE]").split("") WebMock .stub_request(:post, "https://api.openai.com/v1/chat/completions") .with(body: request_body(prompt, stream: true, tool_call: tool_call)) .to_return(status: 200, body: chunks) end def tool_deltas [ { id: tool_id, function: {} }, { id: tool_id, function: { name: "get_weather", arguments: "" } }, { id: tool_id, function: { name: "get_weather", arguments: "" } }, { id: tool_id, function: { name: "get_weather", arguments: "{" } }, { id: tool_id, function: { name: "get_weather", arguments: " \"location\": \"Sydney\"" } }, { id: tool_id, function: { name: "get_weather", arguments: " ,\"unit\": \"c\" }" } }, ] end def tool_response { id: tool_id, function: { name: "get_weather", arguments: { location: "Sydney", unit: "c" }.to_json, }, } end def tool_id "eujbuebfe" end def tool_payload { type: "function", function: { name: "get_weather", description: "Get the weather in a city", parameters: { type: "object", properties: { location: { type: "string", description: "the city name", }, unit: { type: "string", description: "the unit of measurement celcius c or fahrenheit f", enum: %w[c f], }, }, required: %w[location unit], }, }, } end def request_body(prompt, stream: false, tool_call: false) model .default_options .merge(messages: prompt) .tap do |b| b[:stream] = true if stream b[:tools] = [tool_payload] if tool_call end .to_json end end RSpec.describe DiscourseAi::Completions::Endpoints::OpenAi do subject(:endpoint) do described_class.new("gpt-3.5-turbo", DiscourseAi::Tokenizer::OpenAiTokenizer) end fab!(:user) { Fabricate(:user) } let(:open_ai_mock) { OpenAiMock.new(endpoint) } let(:compliance) do EndpointsCompliance.new(self, endpoint, DiscourseAi::Completions::Dialects::ChatGpt, user) end describe "#perform_completion!" do context "when using regular mode" do context "with simple prompts" do it "completes a trivial prompt and logs the response" do compliance.regular_mode_simple_prompt(open_ai_mock) end end context "with tools" do it "returns a function invocation" do compliance.regular_mode_tools(open_ai_mock) end end end describe "when using streaming mode" do context "with simple prompts" do it "completes a trivial prompt and logs the response" do compliance.streaming_mode_simple_prompt(open_ai_mock) end it "will automatically recover from a bad payload" do # this should not happen, but lets ensure nothing bad happens # the row with test1 is invalid json raw_data = <<~TEXT.strip d|a|t|a|:| |{|"choices":[{"delta":{"content":"test,"}}]} data: {"choices":[{"delta":{"content":"test1,"}}] data: {"choices":[{"delta":|{"content":"test2,"}}]} data: {"choices":[{"delta":{"content":"test3,"}}]|} data: {"choices":[{|"|d|elta":{"content":"test4"}}]|} data: [D|ONE] TEXT chunks = raw_data.split("|") open_ai_mock.with_chunk_array_support do open_ai_mock.stub_streamed_response(compliance.dialect.translate, chunks) do partials = [] endpoint.perform_completion!(compliance.dialect, user) do |partial| partials << partial end expect(partials.join).to eq("test,test1,test2,test3,test4") end end end end context "with tools" do it "returns a function invocation" do compliance.streaming_mode_tools(open_ai_mock) end end end end end