# frozen_string_literal: true module DiscourseAi module Embeddings module VectorRepresentations class Base def self.current_representation(strategy) subclasses.map { _1.new(strategy) }.find { _1.name == SiteSetting.ai_embeddings_model } end def initialize(strategy) @strategy = strategy end def consider_indexing(memory: "100MB") # Using extension maintainer's recommendation for ivfflat indexes # Results are not as good as without indexes, but it's much faster # Disk usage is ~1x the size of the table, so this doubles table total size count = DB.query_single("SELECT count(*) FROM #{table_name};").first lists = [count < 1_000_000 ? count / 1000 : Math.sqrt(count).to_i, 10].max probes = [count < 1_000_000 ? lists / 10 : Math.sqrt(lists).to_i, 1].max existing_index = DB.query_single(<<~SQL, index_name: index_name).first SELECT indexdef FROM pg_indexes WHERE indexname = :index_name LIMIT 1 SQL if !existing_index.present? Rails.logger.info("Index #{index_name} does not exist, creating...") return create_index!(memory, lists, probes) end existing_index_age = DB .query_single( "SELECT pg_catalog.obj_description((:index_name)::regclass, 'pg_class');", index_name: index_name, ) .first .to_i || 0 new_rows = DB.query_single( "SELECT count(*) FROM #{table_name} WHERE created_at > '#{Time.at(existing_index_age)}';", ).first existing_lists = existing_index.match(/lists='(\d+)'/)&.captures&.first&.to_i if existing_index_age > 0 && existing_index_age < 1.hour.ago.to_i if new_rows > 10_000 Rails.logger.info( "Index #{index_name} is #{existing_index_age} seconds old, and there are #{new_rows} new rows, updating...", ) return create_index!(memory, lists, probes) elsif existing_lists != lists Rails.logger.info( "Index #{index_name} already exists, but lists is #{existing_lists} instead of #{lists}, updating...", ) return create_index!(memory, lists, probes) end end Rails.logger.info( "Index #{index_name} kept. #{Time.now.to_i - existing_index_age} seconds old, #{new_rows} new rows, #{existing_lists} lists, #{probes} probes.", ) end def create_index!(memory, lists, probes) DB.exec("SET work_mem TO '#{memory}';") DB.exec("SET maintenance_work_mem TO '#{memory}';") DB.exec(<<~SQL) DROP INDEX IF EXISTS #{index_name}; CREATE INDEX IF NOT EXISTS #{index_name} ON #{table_name} USING ivfflat (embeddings #{pg_index_type}) WITH (lists = #{lists}); SQL DB.exec("COMMENT ON INDEX #{index_name} IS '#{Time.now.to_i}';") DB.exec("RESET work_mem;") DB.exec("RESET maintenance_work_mem;") database = DB.query_single("SELECT current_database();").first DB.exec("ALTER DATABASE #{database} SET ivfflat.probes = #{probes};") end def vector_from(text) raise NotImplementedError end def generate_topic_representation_from(target, persist: true) text = @strategy.prepare_text_from(target, tokenizer, max_sequence_length - 2) new_digest = OpenSSL::Digest::SHA1.hexdigest(text) current_digest = DB.query_single(<<~SQL, topic_id: target.id).first SELECT digest FROM #{table_name} WHERE topic_id = :topic_id LIMIT 1 SQL return if current_digest == new_digest vector = vector_from(text) save_to_db(target, vector, new_digest) if persist end def topic_id_from_representation(raw_vector) DB.query_single(<<~SQL, query_embedding: raw_vector).first SELECT topic_id FROM #{table_name} ORDER BY embeddings #{pg_function} '[:query_embedding]' LIMIT 1 SQL end def asymmetric_topics_similarity_search(raw_vector, limit:, offset:, return_distance: false) results = DB.query(<<~SQL, query_embedding: raw_vector, limit: limit, offset: offset) SELECT topic_id, embeddings #{pg_function} '[:query_embedding]' AS distance FROM #{table_name} ORDER BY embeddings #{pg_function} '[:query_embedding]' LIMIT :limit OFFSET :offset SQL if return_distance results.map { |r| [r.topic_id, r.distance] } else results.map(&:topic_id) end rescue PG::Error => e Rails.logger.error("Error #{e} querying embeddings for model #{name}") raise MissingEmbeddingError end def symmetric_topics_similarity_search(topic) DB.query(<<~SQL, topic_id: topic.id).map(&:topic_id) SELECT topic_id FROM #{table_name} ORDER BY embeddings #{pg_function} ( SELECT embeddings FROM #{table_name} WHERE topic_id = :topic_id LIMIT 1 ) LIMIT 100 SQL rescue PG::Error => e Rails.logger.error( "Error #{e} querying embeddings for topic #{topic.id} and model #{name}", ) raise MissingEmbeddingError end def table_name "ai_topic_embeddings_#{id}_#{@strategy.id}" end def index_name "#{table_name}_search" end def name raise NotImplementedError end def dimensions raise NotImplementedError end def max_sequence_length raise NotImplementedError end def id raise NotImplementedError end def pg_function raise NotImplementedError end def version raise NotImplementedError end def tokenizer raise NotImplementedError end protected def save_to_db(target, vector, digest) DB.exec( <<~SQL, INSERT INTO #{table_name} (topic_id, model_version, strategy_version, digest, embeddings, created_at, updated_at) VALUES (:topic_id, :model_version, :strategy_version, :digest, '[:embeddings]', CURRENT_TIMESTAMP, CURRENT_TIMESTAMP) ON CONFLICT (topic_id) DO UPDATE SET model_version = :model_version, strategy_version = :strategy_version, digest = :digest, embeddings = '[:embeddings]', updated_at = CURRENT_TIMESTAMP SQL topic_id: target.id, model_version: version, strategy_version: @strategy.version, digest: digest, embeddings: vector, ) end end end end end