# frozen_string_literal: true module DiscourseAi module AiHelper class Assistant AI_HELPER_PROMPTS_CACHE_KEY = "ai_helper_prompts" def self.clear_prompt_cache! Discourse.cache.delete(AI_HELPER_PROMPTS_CACHE_KEY) end def available_prompts Discourse .cache .fetch(AI_HELPER_PROMPTS_CACHE_KEY, expires_in: 30.minutes) do prompts = CompletionPrompt.where(enabled: true) # Hide illustrate_post if disabled prompts = prompts.where.not( name: "illustrate_post", ) if SiteSetting.ai_helper_illustrate_post_model == "disabled" prompts = prompts.map do |prompt| translation = I18n.t("discourse_ai.ai_helper.prompts.#{prompt.name}", default: nil) || prompt.translated_name || prompt.name { id: prompt.id, name: prompt.name, translated_name: translation, prompt_type: prompt.prompt_type, icon: icon_map(prompt.name), location: location_map(prompt.name), } end prompts end end def custom_locale_instructions(user = nil) locale = SiteSetting.default_locale locale = user.locale || SiteSetting.default_locale if SiteSetting.allow_user_locale && user locale_hash = LocaleSiteSetting.language_names[locale] if locale != "en" && locale_hash locale_description = "#{locale_hash["name"]} (#{locale_hash["nativeName"]})" "It is imperative that you write your answer in #{locale_description}, you are interacting with a #{locale_description} speaking user. Leave tag names in English." else nil end end def localize_prompt!(prompt, user = nil) locale_instructions = custom_locale_instructions(user) if locale_instructions prompt.messages[0][:content] = prompt.messages[0][:content] + locale_instructions end if prompt.messages[0][:content].include?("%LANGUAGE%") locale = SiteSetting.default_locale locale = user.locale || SiteSetting.default_locale if SiteSetting.allow_user_locale && user locale_hash = LocaleSiteSetting.language_names[locale] prompt.messages[0][:content] = prompt.messages[0][:content].gsub( "%LANGUAGE%", "#{locale_hash["name"]}", ) end end def generate_prompt(completion_prompt, input, user, &block) llm = DiscourseAi::Completions::Llm.proxy(SiteSetting.ai_helper_model) prompt = completion_prompt.messages_with_input(input) localize_prompt!(prompt, user) llm.generate( prompt, user: user, temperature: completion_prompt.temperature, stop_sequences: completion_prompt.stop_sequences, &block ) end def generate_and_send_prompt(completion_prompt, input, user) completion_result = generate_prompt(completion_prompt, input, user) result = { type: completion_prompt.prompt_type } result[:suggestions] = ( if completion_prompt.list? parse_list(completion_result).map { |suggestion| sanitize_result(suggestion) } else sanitized = sanitize_result(completion_result) result[:diff] = parse_diff(input, sanitized) if completion_prompt.diff? [sanitized] end ) result end def stream_prompt(completion_prompt, input, user, channel) streamed_result = +"" start = Time.now generate_prompt(completion_prompt, input, user) do |partial_response, cancel_function| streamed_result << partial_response # Throttle the updates if (Time.now - start > 0.5) || Rails.env.test? payload = { result: sanitize_result(streamed_result), done: false } publish_update(channel, payload, user) start = Time.now end end sanitized_result = sanitize_result(streamed_result) if sanitized_result.present? publish_update(channel, { result: sanitized_result, done: true }, user) end end def generate_image_caption(image_url, user) if SiteSetting.ai_helper_image_caption_model == "llava" parameters = { input: { image: image_url, top_p: 1, max_tokens: 1024, temperature: 0.2, prompt: "Please describe this image in a single sentence", }, } ::DiscourseAi::Inference::Llava.perform!(parameters).dig(:output).join else prompt = DiscourseAi::Completions::Prompt.new( messages: [ { type: :user, content: [ { type: "text", text: "Describe this image in a single sentence#{custom_locale_instructions(user)}", }, { type: "image_url", image_url: image_url }, ], }, ], skip_validations: true, ) DiscourseAi::Completions::Llm.proxy(SiteSetting.ai_helper_image_caption_model).generate( prompt, user: Discourse.system_user, max_tokens: 1024, ) end end private SANITIZE_REGEX_STR = %w[term context topic replyTo input output result] .map { |tag| "<#{tag}>\\n?|\\n?" } .join("|") SANITIZE_REGEX = Regexp.new(SANITIZE_REGEX_STR, Regexp::IGNORECASE | Regexp::MULTILINE) def sanitize_result(result) result.gsub(SANITIZE_REGEX, "") end def publish_update(channel, payload, user) MessageBus.publish(channel, payload, user_ids: [user.id]) end def icon_map(name) case name when "translate" "language" when "generate_titles" "heading" when "proofread" "spell-check" when "markdown_table" "table" when "tone" "microphone" when "custom_prompt" "comment" when "rewrite" "pen" when "explain" "question" when "illustrate_post" "images" else nil end end def location_map(name) case name when "translate" %w[composer post] when "generate_titles" %w[composer] when "proofread" %w[composer post] when "markdown_table" %w[composer] when "tone" %w[composer] when "custom_prompt" %w[composer post] when "rewrite" %w[composer] when "explain" %w[post] when "summarize" %w[post] when "illustrate_post" %w[composer] else %w[composer post] end end def parse_diff(text, suggestion) cooked_text = PrettyText.cook(text) cooked_suggestion = PrettyText.cook(suggestion) DiscourseDiff.new(cooked_text, cooked_suggestion).inline_html end def parse_list(list) Nokogiri::HTML5.fragment(list).css("item").map(&:text) end end end end