# frozen_string_literal: true module DiscourseAi module Embeddings module VectorRepresentations class Gemini < Base class << self def name "gemini" end def correctly_configured? SiteSetting.ai_gemini_api_key.present? end def dependant_setting_names %w[ai_gemini_api_key] end end def id 5 end def version 1 end def dimensions 768 end def max_sequence_length 1536 # Gemini has a max sequence length of 2048, but the API has a limit of 10000 bytes, hence the lower value end def pg_function "<=>" end def pg_index_type "vector_cosine_ops" end def vector_from(text, asymetric: false) response = DiscourseAi::Inference::GeminiEmbeddings.perform!(text) response[:embedding][:values] end # There is no public tokenizer for Gemini, and from the ones we already ship in the plugin # OpenAI gets the closest results. Gemini Tokenizer results in ~10% less tokens, so it's safe # to use OpenAI tokenizer since it will overestimate the number of tokens. def tokenizer DiscourseAi::Tokenizer::OpenAiTokenizer end end end end end