# frozen_string_literal: true module DiscourseAi module Completions module Endpoints class Anthropic < Base def self.can_contact?(model_provider) model_provider == "anthropic" end def normalize_model_params(model_params) # max_tokens, temperature, stop_sequences are already supported model_params end def default_options(dialect) mapped_model = case llm_model.name when "claude-2" "claude-2.1" when "claude-instant-1" "claude-instant-1.2" when "claude-3-haiku" "claude-3-haiku-20240307" when "claude-3-sonnet" "claude-3-sonnet-20240229" when "claude-3-opus" "claude-3-opus-20240229" when "claude-3-5-sonnet" "claude-3-5-sonnet-20240620" else llm_model.name end options = { model: mapped_model, max_tokens: 3_000 } options[:stop_sequences] = [""] if !dialect.native_tool_support? && dialect.prompt.has_tools? options end def provider_id AiApiAuditLog::Provider::Anthropic end private def xml_tags_to_strip(dialect) if dialect.prompt.has_tools? %w[thinking search_quality_reflection search_quality_score] else [] end end # this is an approximation, we will update it later if request goes through def prompt_size(prompt) tokenizer.size(prompt.system_prompt.to_s + " " + prompt.messages.to_s) end def model_uri URI(llm_model.url) end def prepare_payload(prompt, model_params, dialect) @native_tool_support = dialect.native_tool_support? payload = default_options(dialect).merge(model_params).merge(messages: prompt.messages) payload[:system] = prompt.system_prompt if prompt.system_prompt.present? payload[:stream] = true if @streaming_mode payload[:tools] = prompt.tools if prompt.has_tools? payload end def prepare_request(payload) headers = { "anthropic-version" => "2023-06-01", "x-api-key" => llm_model.api_key, "content-type" => "application/json", } Net::HTTP::Post.new(model_uri, headers).tap { |r| r.body = payload } end def processor @processor ||= DiscourseAi::Completions::AnthropicMessageProcessor.new(streaming_mode: @streaming_mode) end def add_to_function_buffer(function_buffer, partial: nil, payload: nil) processor.to_xml_tool_calls(function_buffer) if !partial end def extract_completion_from(response_raw) processor.process_message(response_raw) end def has_tool?(_response_data) processor.tool_calls.present? end def final_log_update(log) log.request_tokens = processor.input_tokens if processor.input_tokens log.response_tokens = processor.output_tokens if processor.output_tokens end def native_tool_support? @native_tool_support end def partials_from(decoded_chunk) decoded_chunk.split("\n").map { |line| line.split("data: ", 2)[1] }.compact end end end end end