# frozen_string_literal: true module DiscourseAi module Sentiment class EntryPoint def inject_into(plugin) sentiment_analysis_cb = Proc.new do |post| if SiteSetting.ai_sentiment_enabled Jobs.enqueue(:post_sentiment_analysis, post_id: post.id) end end plugin.on(:post_created, &sentiment_analysis_cb) plugin.on(:post_edited, &sentiment_analysis_cb) plugin.add_report("overall_sentiment") do |report| report.modes = [:stacked_chart] threshold = 60 sentiment_count_sql = Proc.new { |sentiment| <<~SQL } COUNT( CASE WHEN (cr.classification::jsonb->'#{sentiment}')::integer > :threshold THEN 1 ELSE NULL END ) AS #{sentiment}_count SQL grouped_sentiments = DB.query( <<~SQL, SELECT DATE_TRUNC('day', p.created_at)::DATE AS posted_at, #{sentiment_count_sql.call("positive")}, -#{sentiment_count_sql.call("negative")} FROM classification_results AS cr INNER JOIN posts p ON p.id = cr.target_id AND cr.target_type = 'Post' INNER JOIN topics t ON t.id = p.topic_id INNER JOIN categories c ON c.id = t.category_id WHERE t.archetype = 'regular' AND p.user_id > 0 AND cr.model_used = 'sentiment' AND (p.created_at > :report_start AND p.created_at < :report_end) GROUP BY DATE_TRUNC('day', p.created_at) SQL report_start: report.start_date, report_end: report.end_date, threshold: threshold, ) data_points = %w[positive negative] return report if grouped_sentiments.empty? report.data = data_points.map do |point| { req: "sentiment_#{point}", color: point == "positive" ? report.colors[:lime] : report.colors[:purple], label: I18n.t("discourse_ai.sentiment.reports.overall_sentiment.#{point}"), data: grouped_sentiments.map do |gs| { x: gs.posted_at, y: gs.public_send("#{point}_count") } end, } end end plugin.add_report("post_emotion") do |report| report.modes = [:radar] threshold = 30 emotion_count_clause = Proc.new { |emotion| <<~SQL } COUNT( CASE WHEN (cr.classification::jsonb->'#{emotion}')::integer > :threshold THEN 1 ELSE NULL END ) AS #{emotion}_count SQL grouped_emotions = DB.query( <<~SQL, SELECT u.trust_level AS trust_level, #{emotion_count_clause.call("sadness")}, #{emotion_count_clause.call("surprise")}, #{emotion_count_clause.call("fear")}, #{emotion_count_clause.call("anger")}, #{emotion_count_clause.call("joy")}, #{emotion_count_clause.call("disgust")} FROM classification_results AS cr INNER JOIN posts p ON p.id = cr.target_id AND cr.target_type = 'Post' INNER JOIN users u ON p.user_id = u.id INNER JOIN topics t ON t.id = p.topic_id INNER JOIN categories c ON c.id = t.category_id WHERE t.archetype = 'regular' AND p.user_id > 0 AND cr.model_used = 'emotion' AND (p.created_at > :report_start AND p.created_at < :report_end) GROUP BY u.trust_level SQL report_start: report.start_date, report_end: report.end_date, threshold: threshold, ) return report if grouped_emotions.empty? emotions = %w[sadness disgust fear anger joy surprise] level_groups = [[0, 1], [2, 3, 4]] report.data = level_groups.each_with_index.map do |lg, idx| color = idx == 0 ? :turquoise : :lime tl_emotion_avgs = grouped_emotions.select { |ge| lg.include?(ge.trust_level) } { req: "emotion_tl_#{lg.join}", color: report.colors[color], label: I18n.t("discourse_ai.sentiment.reports.post_emotion.tl_#{lg.join}"), data: emotions.map do |e| { x: I18n.t("discourse_ai.sentiment.reports.post_emotion.#{e}"), y: tl_emotion_avgs.sum do |tl_emotion_avg| tl_emotion_avg.public_send("#{e}_count").to_i end, } end, } end end end end end end