# frozen_string_literal: true require_relative "endpoint_compliance" class GeminiMock < EndpointMock def response(content, tool_call: false) { candidates: [ { content: { parts: [(tool_call ? content : { text: content })], role: "model", }, finishReason: "STOP", index: 0, safetyRatings: [ { category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" }, ], }, ], promptFeedback: { safetyRatings: [ { category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" }, ], }, } end def stub_response(prompt, response_text, tool_call: false) WebMock .stub_request( :post, "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent?key=#{SiteSetting.ai_gemini_api_key}", ) .with(body: request_body(prompt, tool_call)) .to_return(status: 200, body: JSON.dump(response(response_text, tool_call: tool_call))) end def stream_line(delta, finish_reason: nil, tool_call: false) { candidates: [ { content: { parts: [(tool_call ? delta : { text: delta })], role: "model", }, finishReason: finish_reason, index: 0, safetyRatings: [ { category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HATE_SPEECH", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_HARASSMENT", probability: "NEGLIGIBLE" }, { category: "HARM_CATEGORY_DANGEROUS_CONTENT", probability: "NEGLIGIBLE" }, ], }, ], }.to_json end def stub_streamed_response(prompt, deltas, tool_call: false) chunks = deltas.each_with_index.map do |_, index| if index == (deltas.length - 1) stream_line(deltas[index], finish_reason: "STOP", tool_call: tool_call) else stream_line(deltas[index], tool_call: tool_call) end end chunks = chunks.join("\n,\n").prepend("[\n").concat("\n]").split("") WebMock .stub_request( :post, "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:streamGenerateContent?key=#{SiteSetting.ai_gemini_api_key}", ) .with(body: request_body(prompt, tool_call)) .to_return(status: 200, body: chunks) end def tool_payload { name: "get_weather", description: "Get the weather in a city", parameters: { type: "object", required: %w[location unit], properties: { "location" => { type: "string", description: "the city name", }, "unit" => { type: "string", description: "the unit of measurement celcius c or fahrenheit f", enum: %w[c f], }, }, }, } end def request_body(prompt, tool_call) model .default_options .merge(contents: prompt) .tap { |b| b[:tools] = [{ function_declarations: [tool_payload] }] if tool_call } .to_json end def tool_deltas [ { "functionCall" => { name: "get_weather", args: {} } }, { "functionCall" => { name: "get_weather", args: { location: "" } } }, { "functionCall" => { name: "get_weather", args: { location: "Sydney", unit: "c" } } }, ] end def tool_response { "functionCall" => { name: "get_weather", args: { location: "Sydney", unit: "c" } } } end end RSpec.describe DiscourseAi::Completions::Endpoints::Gemini do subject(:endpoint) { described_class.new("gemini-pro", DiscourseAi::Tokenizer::OpenAiTokenizer) } fab!(:user) let(:image100x100) { plugin_file_from_fixtures("100x100.jpg") } let(:upload100x100) do UploadCreator.new(image100x100, "image.jpg").create_for(Discourse.system_user.id) end let(:gemini_mock) { GeminiMock.new(endpoint) } let(:compliance) do EndpointsCompliance.new(self, endpoint, DiscourseAi::Completions::Dialects::Gemini, user) end it "Supports Vision API" do SiteSetting.ai_gemini_api_key = "ABC" prompt = DiscourseAi::Completions::Prompt.new( "You are image bot", messages: [type: :user, id: "user1", content: "hello", upload_ids: [upload100x100.id]], ) encoded = prompt.encoded_uploads(prompt.messages.last) response = gemini_mock.response("World").to_json req_body = nil llm = DiscourseAi::Completions::Llm.proxy("google:gemini-1.5-pro") url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent?key=ABC" stub_request(:post, url).with( body: proc do |_req_body| req_body = _req_body true end, ).to_return(status: 200, body: response) response = llm.generate(prompt, user: user) expect(response).to eq("World") expected_prompt = { "generationConfig" => { }, "contents" => [ { "role" => "user", "parts" => [ { "text" => "hello" }, { "inlineData" => { "mimeType" => "image/jpeg", "data" => encoded[0][:base64] } }, ], }, ], "systemInstruction" => { "role" => "system", "parts" => [{ "text" => "You are image bot" }], }, } expect(JSON.parse(req_body)).to eq(expected_prompt) end it "Can correctly handle streamed responses even if they are chunked badly" do SiteSetting.ai_gemini_api_key = "ABC" data = +"" data << "da|ta: |" data << gemini_mock.response("Hello").to_json data << "\r\n\r\ndata: " data << gemini_mock.response(" |World").to_json data << "\r\n\r\ndata: " data << gemini_mock.response(" Sam").to_json split = data.split("|") llm = DiscourseAi::Completions::Llm.proxy("google:gemini-1.5-flash") url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:streamGenerateContent?alt=sse&key=ABC" output = +"" gemini_mock.with_chunk_array_support do stub_request(:post, url).to_return(status: 200, body: split) llm.generate("Hello", user: user) { |partial| output << partial } end expect(output).to eq("Hello World Sam") end end