# frozen_string_literal: true module DiscourseAi module Summarization module Models class Llama2 < Base def display_name "Llama2's #{SiteSetting.ai_hugging_face_model_display_name.presence || model}" end def correctly_configured? SiteSetting.ai_hugging_face_api_url.present? end def configuration_hint I18n.t( "discourse_ai.summarization.configuration_hint", count: 1, setting: "ai_hugging_face_api_url", ) end def concatenate_summaries(summaries) completion(<<~TEXT) [INST] <> You are a helpful bot <> Concatenate these disjoint summaries, creating a cohesive narrative: #{summaries.join("\n")} [/INST] TEXT end def summarize_with_truncation(contents, opts) text_to_summarize = contents.map { |c| format_content_item(c) }.join truncated_content = tokenizer.truncate(text_to_summarize, available_tokens) completion(<<~TEXT) [INST] <> #{build_base_prompt(opts)} <> Summarize the following in up to 400 words: #{truncated_content} [/INST] Here is a summary of the above topic: TEXT end def summarize_single(chunk_text, opts) summarize_chunk(chunk_text, opts.merge(single_chunk: true)) end private def summarize_chunk(chunk_text, opts) summary_instruction = if opts[:single_chunk] "Summarize the following forum discussion, creating a cohesive narrative:" else "Summarize the following in up to 400 words:" end completion(<<~TEXT) [INST] <> #{build_base_prompt(opts)} <> #{summary_instruction} #{chunk_text} [/INST] Here is a summary of the above topic: TEXT end def build_base_prompt(opts) base_prompt = <<~TEXT You are a summarization bot. You effectively summarise any text and reply ONLY with ONLY the summarized text. You condense it into a shorter version. You understand and generate Discourse forum Markdown. TEXT if opts[:resource_path] base_prompt += "Try generating links as well the format is #{opts[:resource_path]}. eg: [ref](#{opts[:resource_path]}/77)\n" end base_prompt += "The discussion title is: #{opts[:content_title]}.\n" if opts[ :content_title ] base_prompt end def completion(prompt) ::DiscourseAi::Inference::HuggingFaceTextGeneration.perform!(prompt, model).dig( :generated_text, ) end def tokenizer DiscourseAi::Tokenizer::Llama2Tokenizer end end end end end