# frozen_string_literal: true module DiscourseAi module Embeddings class SemanticRelated def self.candidates_for(topic) return ::Topic.none if SiteSetting.ai_embeddings_semantic_related_topics < 1 cache_for = case topic.created_at when 6.hour.ago..Time.now 15.minutes when 1.day.ago..6.hour.ago 1.hour else 1.day end begin candidate_ids = Discourse .cache .fetch("semantic-suggested-topic-#{topic.id}", expires_in: cache_for) do search_suggestions(topic) end rescue StandardError => e Rails.logger.error("SemanticRelated: #{e}") Jobs.enqueue(:generate_embeddings, topic_id: topic.id) return ::Topic.none end # array_position forces the order of the topics to be preserved ::Topic .visible .listable_topics .secured .where("id <> ?", topic.id) .where(id: candidate_ids) .order("array_position(ARRAY#{candidate_ids}, id)") .limit(SiteSetting.ai_embeddings_semantic_related_topics) end def self.search_suggestions(topic) model_name = SiteSetting.ai_embeddings_semantic_related_model model = DiscourseAi::Embeddings::Models.list.find { |m| m.name == model_name } function = DiscourseAi::Embeddings::Models::SEARCH_FUNCTION_TO_PG_FUNCTION[model.functions.first] candidate_ids = DiscourseAi::Database::Connection.db.query(<<~SQL, topic_id: topic.id).map(&:topic_id) SELECT topic_id FROM topic_embeddings_#{model_name.underscore} ORDER BY embedding #{function} ( SELECT embedding FROM topic_embeddings_#{model_name.underscore} WHERE topic_id = :topic_id LIMIT 1 ) LIMIT 11 SQL # Happens when the topic doesn't have any embeddings # I'd rather not use Exceptions to control the flow, so this should be refactored soon if candidate_ids.empty? || !candidate_ids.include?(topic.id) raise StandardError, "No embeddings found for topic #{topic.id}" end candidate_ids end end end end