# frozen_string_literal: true desc "Backfill embeddings for all topics and posts" task "ai:embeddings:backfill" => [:environment] do public_categories = Category.where(read_restricted: false).pluck(:id) strategy = DiscourseAi::Embeddings::Strategies::Truncation.new vector_rep = DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy) table_name = vector_rep.topic_table_name Topic .joins("LEFT JOIN #{table_name} ON #{table_name}.topic_id = topics.id") .where("#{table_name}.topic_id IS NULL") .where("category_id IN (?)", public_categories) .where(deleted_at: nil) .order("topics.id DESC") .find_each do |t| print "." vector_rep.generate_representation_from(t) end table_name = vector_rep.post_table_name Post .joins("LEFT JOIN #{table_name} ON #{table_name}.post_id = posts.id") .where("#{table_name}.post_id IS NULL") .where(deleted_at: nil) .order("posts.id DESC") .find_each do |t| print "." vector_rep.generate_representation_from(t) end end desc "Creates indexes for embeddings" task "ai:embeddings:index", [:work_mem] => [:environment] do |_, args| strategy = DiscourseAi::Embeddings::Strategies::Truncation.new vector_rep = DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy) vector_rep.consider_indexing(memory: args[:work_mem] || "100MB") end