# frozen_string_literal: true RSpec.describe Jobs::EmbeddingsBackfill do fab!(:second_topic) do topic = Fabricate(:topic, created_at: 1.year.ago, bumped_at: 2.day.ago) Fabricate(:post, topic: topic) topic end fab!(:first_topic) do topic = Fabricate(:topic, created_at: 1.year.ago, bumped_at: 1.day.ago) Fabricate(:post, topic: topic) topic end fab!(:third_topic) do topic = Fabricate(:topic, created_at: 1.year.ago, bumped_at: 3.day.ago) Fabricate(:post, topic: topic) topic end let(:vector_rep) do strategy = DiscourseAi::Embeddings::Strategies::Truncation.new DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy) end it "backfills topics based on bumped_at date" do SiteSetting.ai_embeddings_enabled = true SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com" SiteSetting.ai_embeddings_backfill_batch_size = 1 Jobs.run_immediately! embedding = Array.new(1024) { 1 } WebMock.stub_request( :post, "#{SiteSetting.ai_embeddings_discourse_service_api_endpoint}/api/v1/classify", ).to_return(status: 200, body: JSON.dump(embedding)) Jobs::EmbeddingsBackfill.new.execute({}) topic_ids = DB.query_single("SELECT topic_id from #{vector_rep.topic_table_name}") expect(topic_ids).to eq([first_topic.id]) # pulse again for the rest (and cover code) SiteSetting.ai_embeddings_backfill_batch_size = 100 Jobs::EmbeddingsBackfill.new.execute({}) topic_ids = DB.query_single("SELECT topic_id from #{vector_rep.topic_table_name}") expect(topic_ids).to contain_exactly(first_topic.id, second_topic.id, third_topic.id) end end