# frozen_string_literal: true module DiscourseAi module Summarization module Strategies # Objects inheriting from this class will get passed as a dependency to `DiscourseAi::Summarization::FoldContent`. # This collaborator knows how to source the content to summarize and the prompts used in the process, # one for summarizing a chunk and another for concatenating them if necessary. class Base def initialize(target) @target = target end attr_reader :target, :opts # The summary type differentiates instances of `AiSummary` pointing to a single target. # See the `summary_type` enum for available options. def type raise NotImplementedError end # @returns { Array } - Content to summarize. # # This method returns an array of hashes with the content to summarize using the following structure: # # { # poster: A way to tell who write the content, # id: A number to signal order, # text: Text to summarize # } # def targets_data raise NotImplementedError end # @returns { DiscourseAi::Completions::Prompt } - Prompt passed to the LLM when extending an existing summary. def summary_extension_prompt(_summary, _texts_to_summarize, _tokenizer) raise NotImplementedError end # @returns { DiscourseAi::Completions::Prompt } - Prompt passed to the LLM for summarizing a single chunk of content. def first_summary_prompt(_input, _tokenizer) raise NotImplementedError end # We'll pass this as the feature_name when doing LLM calls. def feature "summarize" end end end end end