#frozen_string_literal: true module DiscourseAi module AiBot module Personas class Persona class << self def rag_conversation_chunks 10 end def vision_enabled false end def vision_max_pixels 1_048_576 end def question_consolidator_llm nil end def allow_chat false end def system_personas @system_personas ||= { Personas::General => -1, Personas::SqlHelper => -2, Personas::Artist => -3, Personas::SettingsExplorer => -4, Personas::Researcher => -5, Personas::Creative => -6, Personas::DallE3 => -7, Personas::DiscourseHelper => -8, Personas::GithubHelper => -9, } end def system_personas_by_id @system_personas_by_id ||= system_personas.invert end def all(user:) # listing tools has to be dynamic cause site settings may change AiPersona.all_personas.filter do |persona| next false if !user.in_any_groups?(persona.allowed_group_ids) if persona.system instance = persona.new ( instance.required_tools == [] || (instance.required_tools - all_available_tools).empty? ) else true end end end def find_by(id: nil, name: nil, user:) all(user: user).find { |persona| persona.id == id || persona.name == name } end def name I18n.t("discourse_ai.ai_bot.personas.#{to_s.demodulize.underscore}.name") end def description I18n.t("discourse_ai.ai_bot.personas.#{to_s.demodulize.underscore}.description") end def all_available_tools tools = [ Tools::ListCategories, Tools::Time, Tools::Search, Tools::Read, Tools::DbSchema, Tools::SearchSettings, Tools::SettingContext, Tools::RandomPicker, Tools::DiscourseMetaSearch, Tools::GithubFileContent, Tools::GithubPullRequestDiff, Tools::GithubSearchFiles, Tools::WebBrowser, Tools::JavascriptEvaluator, ] tools << Tools::GithubSearchCode if SiteSetting.ai_bot_github_access_token.present? tools << Tools::ListTags if SiteSetting.tagging_enabled tools << Tools::Image if SiteSetting.ai_stability_api_key.present? tools << Tools::DallE if SiteSetting.ai_openai_api_key.present? if SiteSetting.ai_google_custom_search_api_key.present? && SiteSetting.ai_google_custom_search_cx.present? tools << Tools::Google end tools end end def id @ai_persona&.id || self.class.system_personas[self.class] end def tools [] end def required_tools [] end def temperature nil end def top_p nil end def options {} end def available_tools self .class .all_available_tools .filter { |tool| tools.include?(tool) } .concat(tools.filter(&:custom?)) end def craft_prompt(context, llm: nil) system_insts = system_prompt.gsub(/\{(\w+)\}/) do |match| found = context[match[1..-2].to_sym] found.nil? ? match : found.to_s end prompt_insts = <<~TEXT.strip #{system_insts} #{available_tools.map(&:custom_system_message).compact_blank.join("\n")} TEXT question_consolidator_llm = llm if self.class.question_consolidator_llm.present? question_consolidator_llm = DiscourseAi::Completions::Llm.proxy(self.class.question_consolidator_llm) end fragments_guidance = rag_fragments_prompt( context[:conversation_context].to_a, llm: question_consolidator_llm, user: context[:user], )&.strip prompt_insts << fragments_guidance if fragments_guidance.present? prompt = DiscourseAi::Completions::Prompt.new( prompt_insts, messages: context[:conversation_context].to_a, topic_id: context[:topic_id], post_id: context[:post_id], ) prompt.max_pixels = self.class.vision_max_pixels if self.class.vision_enabled prompt.tools = available_tools.map(&:signature) if available_tools prompt end def find_tools(partial, bot_user:, llm:, context:) return [] if !partial.include?("") parsed_function = Nokogiri::HTML5.fragment(partial) parsed_function .css("invoke") .map do |fragment| tool_instance(fragment, bot_user: bot_user, llm: llm, context: context) end .compact end protected def tool_instance(parsed_function, bot_user:, llm:, context:) function_id = parsed_function.at("tool_id")&.text function_name = parsed_function.at("tool_name")&.text return nil if function_name.nil? tool_klass = available_tools.find { |c| c.signature.dig(:name) == function_name } return nil if tool_klass.nil? arguments = {} tool_klass.signature[:parameters].to_a.each do |param| name = param[:name] value = parsed_function.at(name)&.text if param[:type] == "array" && value value = begin JSON.parse(value) rescue JSON::ParserError [value.to_s] end elsif param[:type] == "string" && value value = strip_quotes(value).to_s elsif param[:type] == "integer" && value value = strip_quotes(value).to_i end if param[:enum] && value && !param[:enum].include?(value) # invalid enum value value = nil end arguments[name.to_sym] = value if value end tool_klass.new( arguments, tool_call_id: function_id || function_name, persona_options: options[tool_klass].to_h, bot_user: bot_user, llm: llm, context: context, ) end def strip_quotes(value) if value.is_a?(String) if value.start_with?('"') && value.end_with?('"') value = value[1..-2] elsif value.start_with?("'") && value.end_with?("'") value = value[1..-2] else value end else value end end def rag_fragments_prompt(conversation_context, llm:, user:) upload_refs = UploadReference.where(target_id: id, target_type: "AiPersona").pluck(:upload_id) return nil if !SiteSetting.ai_embeddings_enabled? return nil if conversation_context.blank? || upload_refs.blank? latest_interactions = conversation_context.select { |ctx| %i[model user].include?(ctx[:type]) }.last(10) return nil if latest_interactions.empty? # first response if latest_interactions.length == 1 consolidated_question = latest_interactions[0][:content] else consolidated_question = DiscourseAi::AiBot::QuestionConsolidator.consolidate_question( llm, latest_interactions, user, ) end return nil if !consolidated_question strategy = DiscourseAi::Embeddings::Strategies::Truncation.new vector_rep = DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(strategy) reranker = DiscourseAi::Inference::HuggingFaceTextEmbeddings interactions_vector = vector_rep.vector_from(consolidated_question) rag_conversation_chunks = self.class.rag_conversation_chunks candidate_fragment_ids = vector_rep.asymmetric_rag_fragment_similarity_search( interactions_vector, persona_id: id, limit: ( if reranker.reranker_configured? rag_conversation_chunks * 5 else rag_conversation_chunks end ), offset: 0, ) fragments = RagDocumentFragment.where(upload_id: upload_refs, id: candidate_fragment_ids).pluck( :fragment, :metadata, ) if reranker.reranker_configured? guidance = fragments.map { |fragment, _metadata| fragment } ranks = DiscourseAi::Inference::HuggingFaceTextEmbeddings .rerank(conversation_context.last[:content], guidance) .to_a .take(rag_conversation_chunks) .map { _1[:index] } if ranks.empty? fragments = fragments.take(rag_conversation_chunks) else fragments = ranks.map { |idx| fragments[idx] } end end <<~TEXT The following texts will give you additional guidance for your response. We included them because we believe they are relevant to this conversation topic. Texts: #{ fragments .map do |fragment, metadata| if metadata.present? ["# #{metadata}", fragment].join("\n") else fragment end end .join("\n") } TEXT end end end end end