# frozen_string_literal: true RSpec.describe DiscourseAi::Summarization::FoldContent do subject(:summarizer) { DiscourseAi::Summarization.topic_summary(topic) } describe "#summarize" do let!(:llm_model) { assign_fake_provider_to(:ai_summarization_model) } fab!(:topic) { Fabricate(:topic, highest_post_number: 2) } fab!(:post_1) { Fabricate(:post, topic: topic, post_number: 1, raw: "This is a text") } before do SiteSetting.ai_summarization_enabled = true # Make sure each content fits in a single chunk. # 700 is the number of tokens reserved for the prompt. model_tokens = 700 + DiscourseAi::Tokenizer::OpenAiTokenizer.size( "(1 #{post_1.user.username_lower} said: This is a text ", ) + 3 llm_model.update!(max_prompt_tokens: model_tokens) end let(:single_summary) { "single" } let(:concatenated_summary) { "this is a concatenated summary" } fab!(:user) context "when the content to summarize fits in a single call" do it "does one call to summarize content" do result = DiscourseAi::Completions::Llm.with_prepared_responses([single_summary]) do |spy| summarizer.summarize(user).tap { expect(spy.completions).to eq(1) } end expect(result.summarized_text).to eq(single_summary) end end context "when the content to summarize doesn't fit in a single call" do fab!(:post_2) { Fabricate(:post, topic: topic, post_number: 2, raw: "This is a text") } it "keeps extending the summary until there is nothing else to process" do result = DiscourseAi::Completions::Llm.with_prepared_responses( [single_summary, concatenated_summary], ) { |spy| summarizer.summarize(user).tap { expect(spy.completions).to eq(2) } } expect(result.summarized_text).to eq(concatenated_summary) end end end end