# frozen_string_literal: true
module DiscourseAi
module Embeddings
class SemanticSearch
def self.clear_cache_for(query)
digest = OpenSSL::Digest::SHA1.hexdigest(query)
hyde_key =
"semantic-search-#{digest}-#{SiteSetting.ai_embeddings_semantic_search_hyde_model}"
Discourse.cache.delete(hyde_key)
Discourse.cache.delete("#{hyde_key}-#{SiteSetting.ai_embeddings_model}")
Discourse.cache.delete("-#{SiteSetting.ai_embeddings_model}")
end
def initialize(guardian)
@guardian = guardian
end
def cached_query?(query)
digest = OpenSSL::Digest::SHA1.hexdigest(query)
embedding_key =
build_embedding_key(
digest,
SiteSetting.ai_embeddings_semantic_search_hyde_model,
SiteSetting.ai_embeddings_model,
)
Discourse.cache.read(embedding_key).present?
end
def vector
@vector ||= DiscourseAi::Embeddings::Vector.instance
end
def hyde_embedding(search_term)
digest = OpenSSL::Digest::SHA1.hexdigest(search_term)
hyde_key = build_hyde_key(digest, SiteSetting.ai_embeddings_semantic_search_hyde_model)
embedding_key =
build_embedding_key(
digest,
SiteSetting.ai_embeddings_semantic_search_hyde_model,
SiteSetting.ai_embeddings_model,
)
hypothetical_post =
Discourse
.cache
.fetch(hyde_key, expires_in: 1.week) { hypothetical_post_from(search_term) }
Discourse
.cache
.fetch(embedding_key, expires_in: 1.week) { vector.vector_from(hypothetical_post) }
end
def embedding(search_term)
digest = OpenSSL::Digest::SHA1.hexdigest(search_term)
embedding_key = build_embedding_key(digest, "", SiteSetting.ai_embeddings_model)
Discourse.cache.fetch(embedding_key, expires_in: 1.week) { vector.vector_from(search_term) }
end
# this ensures the candidate topics are over selected
# that way we have a much better chance of finding topics
# if the user filtered the results or index is a bit out of date
OVER_SELECTION_FACTOR = 4
def search_for_topics(query, page = 1, hyde: true)
max_results_per_page = 100
limit = [Search.per_filter, max_results_per_page].min + 1
offset = (page - 1) * limit
search = Search.new(query, { guardian: guardian })
search_term = search.term
if search_term.blank? || search_term.length < SiteSetting.min_search_term_length
return Post.none
end
search_embedding = hyde ? hyde_embedding(search_term) : embedding(search_term)
over_selection_limit = limit * OVER_SELECTION_FACTOR
schema = DiscourseAi::Embeddings::Schema.for(Topic, vector_def: vector.vdef)
candidate_topic_ids =
schema.asymmetric_similarity_search(
search_embedding,
limit: over_selection_limit,
offset: offset,
).map(&:topic_id)
semantic_results =
::Post
.where(post_type: ::Topic.visible_post_types(guardian.user))
.public_posts
.where("topics.visible")
.where(topic_id: candidate_topic_ids, post_number: 1)
.order("array_position(ARRAY#{candidate_topic_ids}, posts.topic_id)")
.limit(limit)
query_filter_results = search.apply_filters(semantic_results)
guardian.filter_allowed_categories(query_filter_results)
end
def quick_search(query)
max_semantic_results_per_page = 100
search = Search.new(query, { guardian: guardian })
search_term = search.term
return [] if search_term.nil? || search_term.length < SiteSetting.min_search_term_length
vector = DiscourseAi::Embeddings::Vector.instance
digest = OpenSSL::Digest::SHA1.hexdigest(search_term)
embedding_key =
build_embedding_key(
digest,
SiteSetting.ai_embeddings_semantic_search_hyde_model,
SiteSetting.ai_embeddings_model,
)
search_term_embedding =
Discourse
.cache
.fetch(embedding_key, expires_in: 1.week) do
vector.vector_from(search_term, asymetric: true)
end
candidate_post_ids =
DiscourseAi::Embeddings::Schema
.for(Post, vector_def: vector.vdef)
.asymmetric_similarity_search(
search_term_embedding,
limit: max_semantic_results_per_page,
offset: 0,
)
.map(&:post_id)
semantic_results =
::Post
.where(post_type: ::Topic.visible_post_types(guardian.user))
.public_posts
.where("topics.visible")
.where(id: candidate_post_ids)
.order("array_position(ARRAY#{candidate_post_ids}, posts.id)")
filtered_results = search.apply_filters(semantic_results)
rerank_posts_payload =
filtered_results
.map(&:cooked)
.map { Nokogiri::HTML5.fragment(_1).text }
.map { _1.truncate(2000, omission: "") }
reranked_results =
DiscourseAi::Inference::HuggingFaceTextEmbeddings.rerank(
search_term,
rerank_posts_payload,
)
reordered_ids = reranked_results.map { _1[:index] }.map { filtered_results[_1].id }.take(5)
reranked_semantic_results =
::Post
.where(post_type: ::Topic.visible_post_types(guardian.user))
.public_posts
.where("topics.visible")
.where(id: reordered_ids)
.order("array_position(ARRAY#{reordered_ids}, posts.id)")
guardian.filter_allowed_categories(reranked_semantic_results)
end
def hypothetical_post_from(search_term)
prompt = DiscourseAi::Completions::Prompt.new(<<~TEXT.strip)
You are a content creator for a forum. The forum description is as follows:
#{SiteSetting.title}
#{SiteSetting.site_description}
Put the forum post between tags.
TEXT
prompt.push(type: :user, content: <<~TEXT.strip)
Using this description, write a forum post about the subject inside the XML tags:
#{search_term}
TEXT
llm_response =
DiscourseAi::Completions::Llm.proxy(
SiteSetting.ai_embeddings_semantic_search_hyde_model,
).generate(prompt, user: @guardian.user, feature_name: "semantic_search_hyde")
Nokogiri::HTML5.fragment(llm_response).at("ai")&.text.presence || llm_response
end
private
attr_reader :guardian
def build_hyde_key(digest, hyde_model)
"semantic-search-#{digest}-#{hyde_model}"
end
def build_embedding_key(digest, hyde_model, embedding_model)
"#{build_hyde_key(digest, hyde_model)}-#{embedding_model}"
end
end
end
end