# frozen_string_literal: true require_relative "endpoint_compliance" class OpenAiMock < EndpointMock def response(content, tool_call: false) message_content = if tool_call { tool_calls: [content] } else { content: content } end { id: "chatcmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S", object: "chat.completion", created: 1_678_464_820, model: "gpt-3.5-turbo-0301", usage: { prompt_tokens: 8, completion_tokens: 13, total_tokens: 499, }, choices: [ { message: { role: "assistant" }.merge(message_content), finish_reason: "stop", index: 0 }, ], } end def stub_response(prompt, response_text, tool_call: false) WebMock .stub_request(:post, "https://api.openai.com/v1/chat/completions") .with(body: request_body(prompt, tool_call: tool_call)) .to_return(status: 200, body: JSON.dump(response(response_text, tool_call: tool_call))) end def stream_line(delta, finish_reason: nil, tool_call: false) message_content = if tool_call { tool_calls: [delta] } else { content: delta } end +"data: " << { id: "chatcmpl-#{SecureRandom.hex}", object: "chat.completion.chunk", created: 1_681_283_881, model: "gpt-3.5-turbo-0301", choices: [{ delta: message_content }], finish_reason: finish_reason, index: 0, }.to_json end def stub_raw(chunks, body_blk: nil) stub = WebMock.stub_request(:post, "https://api.openai.com/v1/chat/completions") stub.with(body: body_blk) if body_blk stub.to_return(status: 200, body: chunks) end def stub_streamed_response(prompt, deltas, tool_call: false) chunks = deltas.each_with_index.map do |_, index| if index == (deltas.length - 1) stream_line(deltas[index], finish_reason: "stop_sequence", tool_call: tool_call) else stream_line(deltas[index], tool_call: tool_call) end end chunks = (chunks.join("\n\n") << "data: [DONE]").split("") WebMock .stub_request(:post, "https://api.openai.com/v1/chat/completions") .with(body: request_body(prompt, stream: true, tool_call: tool_call)) .to_return(status: 200, body: chunks) yield if block_given? end def tool_deltas [ { id: tool_id, function: {} }, { id: tool_id, function: { name: "get_weather", arguments: "" } }, { id: tool_id, function: { arguments: "" } }, { id: tool_id, function: { arguments: "{" } }, { id: tool_id, function: { arguments: " \"location\": \"Sydney\"" } }, { id: tool_id, function: { arguments: " ,\"unit\": \"c\" }" } }, ] end def tool_response { id: tool_id, function: { name: "get_weather", arguments: { location: "Sydney", unit: "c" }.to_json, }, } end def tool_id "tool_0" end def tool_payload { type: "function", function: { name: "get_weather", description: "Get the weather in a city", parameters: { type: "object", properties: { location: { type: "string", description: "the city name", }, unit: { type: "string", description: "the unit of measurement celcius c or fahrenheit f", enum: %w[c f], }, }, required: %w[location unit], }, }, } end def request_body(prompt, stream: false, tool_call: false) model .default_options .merge(messages: prompt) .tap do |b| if stream b[:stream] = true b[:stream_options] = { include_usage: true } end b[:tools] = [tool_payload] if tool_call end .to_json end end RSpec.describe DiscourseAi::Completions::Endpoints::OpenAi do subject(:endpoint) { described_class.new(model) } fab!(:user) fab!(:model) { Fabricate(:llm_model) } let(:echo_tool) do { name: "echo", description: "echo something", parameters: [{ name: "text", type: "string", description: "text to echo", required: true }], } end let(:tools) { [echo_tool] } let(:open_ai_mock) { OpenAiMock.new(endpoint) } let(:compliance) do EndpointsCompliance.new(self, endpoint, DiscourseAi::Completions::Dialects::ChatGpt, user) end let(:image100x100) { plugin_file_from_fixtures("100x100.jpg") } let(:upload100x100) do UploadCreator.new(image100x100, "image.jpg").create_for(Discourse.system_user.id) end describe "repeat calls" do it "can properly reset context" do llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}") tools = [ { name: "echo", description: "echo something", parameters: [ { name: "text", type: "string", description: "text to echo", required: true }, ], }, ] prompt = DiscourseAi::Completions::Prompt.new( "You are a bot", messages: [type: :user, id: "user1", content: "echo hello"], tools: tools, ) response = { id: "chatcmpl-9JxkAzzaeO4DSV3omWvok9TKhCjBH", object: "chat.completion", created: 1_714_544_914, model: "gpt-4-turbo-2024-04-09", choices: [ { index: 0, message: { role: "assistant", content: nil, tool_calls: [ { id: "call_I8LKnoijVuhKOM85nnEQgWwd", type: "function", function: { name: "echo", arguments: "{\"text\":\"hello\"}", }, }, ], }, logprobs: nil, finish_reason: "tool_calls", }, ], usage: { prompt_tokens: 55, completion_tokens: 13, total_tokens: 68, }, system_fingerprint: "fp_ea6eb70039", }.to_json stub_request(:post, "https://api.openai.com/v1/chat/completions").to_return(body: response) result = llm.generate(prompt, user: user) tool_call = DiscourseAi::Completions::ToolCall.new( id: "call_I8LKnoijVuhKOM85nnEQgWwd", name: "echo", parameters: { text: "hello", }, ) expect(result).to eq(tool_call) stub_request(:post, "https://api.openai.com/v1/chat/completions").to_return( body: { choices: [message: { content: "OK" }] }.to_json, ) result = llm.generate(prompt, user: user) expect(result).to eq("OK") end end describe "forced tool use" do it "can properly force tool use" do llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}") tools = [ { name: "echo", description: "echo something", parameters: [ { name: "text", type: "string", description: "text to echo", required: true }, ], }, ] prompt = DiscourseAi::Completions::Prompt.new( "You are a bot", messages: [type: :user, id: "user1", content: "echo hello"], tools: tools, tool_choice: "echo", ) response = { id: "chatcmpl-9JxkAzzaeO4DSV3omWvok9TKhCjBH", object: "chat.completion", created: 1_714_544_914, model: "gpt-4-turbo-2024-04-09", choices: [ { index: 0, message: { role: "assistant", content: nil, tool_calls: [ { id: "call_I8LKnoijVuhKOM85nnEQgWwd", type: "function", function: { name: "echo", arguments: "{\"text\":\"hllo\"}", }, }, ], }, logprobs: nil, finish_reason: "tool_calls", }, ], usage: { prompt_tokens: 55, completion_tokens: 13, total_tokens: 68, }, system_fingerprint: "fp_ea6eb70039", }.to_json body_json = nil stub_request(:post, "https://api.openai.com/v1/chat/completions").with( body: proc { |body| body_json = JSON.parse(body, symbolize_names: true) }, ).to_return(body: response) result = llm.generate(prompt, user: user) expect(body_json[:tool_choice]).to eq({ type: "function", function: { name: "echo" } }) log = AiApiAuditLog.order(:id).last expect(log.request_tokens).to eq(55) expect(log.response_tokens).to eq(13) expected = DiscourseAi::Completions::ToolCall.new( id: "call_I8LKnoijVuhKOM85nnEQgWwd", name: "echo", parameters: { text: "hllo", }, ) expect(result).to eq(expected) stub_request(:post, "https://api.openai.com/v1/chat/completions").to_return( body: { choices: [message: { content: "OK" }] }.to_json, ) result = llm.generate(prompt, user: user) expect(result).to eq("OK") end end describe "image support" do it "can handle images" do model = Fabricate(:llm_model, vision_enabled: true) llm = DiscourseAi::Completions::Llm.proxy("custom:#{model.id}") prompt = DiscourseAi::Completions::Prompt.new( "You are image bot", messages: [type: :user, id: "user1", content: "hello", upload_ids: [upload100x100.id]], ) encoded = prompt.encoded_uploads(prompt.messages.last) parsed_body = nil stub_request(:post, "https://api.openai.com/v1/chat/completions").with( body: proc do |req_body| parsed_body = JSON.parse(req_body, symbolize_names: true) true end, ).to_return(status: 200, body: { choices: [message: { content: "nice pic" }] }.to_json) completion = llm.generate(prompt, user: user) expect(completion).to eq("nice pic") expected_body = { model: "gpt-4-turbo", messages: [ { role: "system", content: "You are image bot" }, { role: "user", content: [ { type: "image_url", image_url: { url: "data:#{encoded[0][:mime_type]};base64,#{encoded[0][:base64]}", }, }, { type: "text", text: "hello" }, ], name: "user1", }, ], } expect(parsed_body).to eq(expected_body) end end describe "#perform_completion!" do context "when using XML tool calls format" do let(:xml_tool_call_response) { <<~XML } get_weather Sydney c XML it "parses XML tool calls" do response = { id: "chatcmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S", object: "chat.completion", created: 1_678_464_820, model: "gpt-3.5-turbo-0301", usage: { prompt_tokens: 8, completion_tokens: 13, total_tokens: 499, }, choices: [ { message: { role: "assistant", content: xml_tool_call_response, }, finish_reason: "stop", index: 0, }, ], }.to_json endpoint.llm_model.update!(provider_params: { disable_native_tools: true }) body = nil open_ai_mock.stub_raw(response, body_blk: proc { |inner_body| body = inner_body }) dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools)) tool_call = endpoint.perform_completion!(dialect, user) body_parsed = JSON.parse(body, symbolize_names: true) expect(body_parsed[:tools]).to eq(nil) expect(body_parsed[:messages][0][:content]).to include("") expect(tool_call.name).to eq("get_weather") expect(tool_call.parameters).to eq({ location: "Sydney", unit: "c" }) end end context "when using regular mode" do context "with simple prompts" do it "completes a trivial prompt and logs the response" do compliance.regular_mode_simple_prompt(open_ai_mock) end end context "with tools" do it "returns a function invocation" do compliance.regular_mode_tools(open_ai_mock) end end end describe "when using streaming mode" do context "with simple prompts" do it "completes a trivial prompt and logs the response" do compliance.streaming_mode_simple_prompt(open_ai_mock) end it "will automatically recover from a bad payload" do called = false # this should not happen, but lets ensure nothing bad happens # the row with test1 is invalid json raw_data = <<~TEXT.strip d|a|t|a|:| |{|"choices":[{"delta":{"content":"test,"}}]} data: {"choices":[{"delta":{"content":"test|1| |,"}}] data: {"choices":[{"delta":|{"content":"test2 ,"}}]} data: {"choices":[{"delta":{"content":"test3,"}}]|} data: {"choices":[{|"|d|elta":{"content":"test4"}}]|} data: [D|ONE] TEXT chunks = raw_data.split("|") open_ai_mock.with_chunk_array_support do open_ai_mock.stub_raw(chunks) partials = [] endpoint.perform_completion!(compliance.dialect, user) { |partial| partials << partial } called = true expect(partials.join).to eq("test,test2 ,test3,test4") end expect(called).to be(true) end end context "with tools" do it "returns a function invocation" do compliance.streaming_mode_tools(open_ai_mock) end it "properly handles multiple tool calls" do raw_data = <<~TEXT.strip data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"role":"assistant","content":null},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"id":"call_3Gyr3HylFJwfrtKrL6NaIit1","type":"function","function":{"name":"search","arguments":""}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{\\"se"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"arch_"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"query\\""}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":": \\"D"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"iscou"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"rse AI"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":" bot"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"\\"}"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"id":"call_H7YkbgYurHpyJqzwUN4bghwN","type":"function","function":{"name":"search","arguments":""}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"{\\"qu"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"ery\\":"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":" \\"Disc"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"ours"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"e AI "}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"bot2\\"}"}}]},"logprobs":null,"finish_reason":null}]} data: {"id":"chatcmpl-8xjcr5ZOGZ9v8BDYCx0iwe57lJAGk","object":"chat.completion.chunk","created":1709247429,"model":"gpt-4-0125-preview","system_fingerprint":"fp_91aa3742b1","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"tool_calls"}]} data: [DONE] TEXT open_ai_mock.stub_raw(raw_data) response = [] dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools)) endpoint.perform_completion!(dialect, user) { |partial| response << partial } tool_calls = [ DiscourseAi::Completions::ToolCall.new( name: "search", id: "call_3Gyr3HylFJwfrtKrL6NaIit1", parameters: { search_query: "Discourse AI bot", }, ), DiscourseAi::Completions::ToolCall.new( name: "search", id: "call_H7YkbgYurHpyJqzwUN4bghwN", parameters: { query: "Discourse AI bot2", }, ), ] expect(response).to eq(tool_calls) end it "properly handles newlines" do response = <<~TEXT.strip data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":":\\n\\n"},"logprobs":null,"finish_reason":null}],"usage":null} data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"```"},"logprobs":null,"finish_reason":null}],"usage":null} data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"ruby"},"logprobs":null,"finish_reason":null}],"usage":null} data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"\\n"},"logprobs":null,"finish_reason":null}],"usage":null} data: {"id":"chatcmpl-ASngi346UA9k006bF6GBRV66tEJfQ","object":"chat.completion.chunk","created":1731427548,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_159d8341cc","choices":[{"index":0,"delta":{"content":"def"},"logprobs":null,"finish_reason":null}],"usage":null} TEXT open_ai_mock.stub_raw(response) partials = [] dialect = compliance.dialect(prompt: compliance.generic_prompt) endpoint.perform_completion!(dialect, user) { |partial| partials << partial } expect(partials).to eq([":\n\n", "```", "ruby", "\n", "def"]) end it "uses proper token accounting" do response = <<~TEXT.strip data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[{"index":0,"delta":{"role":"assistant","content":""},"logprobs":null,"finish_reason":null}],"usage":null}| data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[{"index":0,"delta":{"content":"Hello"},"logprobs":null,"finish_reason":null}],"usage":null}| data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}],"usage":null}| data: {"id":"chatcmpl-9OZidiHncpBhhNMcqCus9XiJ3TkqR","object":"chat.completion.chunk","created":1715644203,"model":"gpt-4o-2024-05-13","system_fingerprint":"fp_729ea513f7","choices":[],"usage":{"prompt_tokens":20,"completion_tokens":9,"total_tokens":29}}| data: [DONE] TEXT chunks = response.split("|") open_ai_mock.with_chunk_array_support do open_ai_mock.stub_raw(chunks) partials = [] dialect = compliance.dialect(prompt: compliance.generic_prompt) endpoint.perform_completion!(dialect, user) { |partial| partials << partial } expect(partials).to eq(["Hello"]) log = AiApiAuditLog.order("id desc").first expect(log.request_tokens).to eq(20) expect(log.response_tokens).to eq(9) end end it "properly handles multiple params in partial tool calls" do # this is not working and it is driving me nuts so I will use a sledghammer # text = plugin_file_from_fixtures("openai_artifact_call.txt", "bot") path = File.join(__dir__, "../../../fixtures/bot", "openai_artifact_call.txt") text = File.read(path) partials = [] open_ai_mock.with_chunk_array_support do open_ai_mock.stub_raw(text.scan(/.*\n/)) dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools)) endpoint.perform_completion!(dialect, user, partial_tool_calls: true) do |partial| partials << partial.dup end end expect(partials.compact.length).to eq(128) params = partials .map { |p| p.parameters if p.is_a?(DiscourseAi::Completions::ToolCall) && p.partial? } .compact lengths = {} params.each do |p| p.each do |k, v| if lengths[k] && lengths[k] > v.length expect(lengths[k]).to be > v.length else lengths[k] = v.length end end end end it "properly handles spaces in tools payload and partial tool calls" do raw_data = <<~TEXT.strip data: {"choices":[{"index":0,"delta":{"role":"assistant","content":null,"tool_calls":[{"index":0,"id":"func_id","type":"function","function":{"name":"go|ogle","arg|uments":""}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "{\\""}}]}}]} data: {"ch|oices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "query"}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "\\":\\""}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "Ad"}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "a|b"}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "as"}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": |"| "}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "9"}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "."}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"argume|nts": "1"}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": [{"index": 0, "function": {"arguments": "\\"}"}}]}}]} data: {"choices": [{"index": 0, "delta": {"tool_calls": []}}]} data: [D|ONE] TEXT chunks = raw_data.split("|") open_ai_mock.with_chunk_array_support do open_ai_mock.stub_raw(chunks) partials = [] dialect = compliance.dialect(prompt: compliance.generic_prompt(tools: tools)) endpoint.perform_completion!(dialect, user, partial_tool_calls: true) do |partial| partials << partial.dup end tool_call = DiscourseAi::Completions::ToolCall.new( id: "func_id", name: "google", parameters: { query: "Adabas 9.1", }, ) expect(partials.last).to eq(tool_call) progress = partials.map { |p| p.parameters[:query] } expect(progress).to eq(["Ad", "Adabas", "Adabas 9.", "Adabas 9.1"]) end end end end end end