discourse-ai/lib/completions/llm.rb

153 lines
5.2 KiB
Ruby

# frozen_string_literal: true
# A facade that abstracts multiple LLMs behind a single interface.
#
# Internally, it consists of the combination of a dialect and an endpoint.
# After receiving a prompt using our generic format, it translates it to
# the target model and routes the completion request through the correct gateway.
#
# Use the .proxy method to instantiate an object.
# It chooses the correct dialect and endpoint for the model you want to interact with.
#
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
# instead of relying on WebMock stubs like we did in the past.
#
module DiscourseAi
module Completions
class Llm
UNKNOWN_MODEL = Class.new(StandardError)
class << self
def models_by_provider
# ChatGPT models are listed under open_ai but they are actually available through OpenAI and Azure.
# However, since they use the same URL/key settings, there's no reason to duplicate them.
{
aws_bedrock: %w[claude-instant-1 claude-2],
anthropic: %w[claude-instant-1 claude-2],
vllm: %w[
mistralai/Mixtral-8x7B-Instruct-v0.1
mistralai/Mistral-7B-Instruct-v0.2
StableBeluga2
Upstage-Llama-2-*-instruct-v2
Llama2-*-chat-hf
Llama2-chat-hf
],
hugging_face: %w[
mistralai/Mixtral-8x7B-Instruct-v0.1
mistralai/Mistral-7B-Instruct-v0.2
StableBeluga2
Upstage-Llama-2-*-instruct-v2
Llama2-*-chat-hf
Llama2-chat-hf
],
open_ai: %w[gpt-3.5-turbo gpt-4 gpt-3.5-turbo-16k gpt-4-32k gpt-4-turbo],
google: %w[gemini-pro],
}.tap { |h| h[:fake] = ["fake"] if Rails.env.test? || Rails.env.development? }
end
def with_prepared_responses(responses)
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
yield(@canned_response)
ensure
# Don't leak prepared response if there's an exception.
@canned_response = nil
end
def proxy(model_name)
provider_and_model_name = model_name.split(":")
provider_name = provider_and_model_name.first
model_name_without_prov = provider_and_model_name[1..].join
dialect_klass =
DiscourseAi::Completions::Dialects::Dialect.dialect_for(model_name_without_prov)
return new(dialect_klass, @canned_response, model_name) if @canned_response
gateway =
DiscourseAi::Completions::Endpoints::Base.endpoint_for(
provider_name,
model_name_without_prov,
).new(model_name_without_prov, dialect_klass.tokenizer)
new(dialect_klass, gateway, model_name_without_prov)
end
end
def initialize(dialect_klass, gateway, model_name)
@dialect_klass = dialect_klass
@gateway = gateway
@model_name = model_name
end
delegate :tokenizer, to: :dialect_klass
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
# @param user { User } - User requesting the summary.
#
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
#
# @returns { String } - Completion result.
#
# When the model invokes a tool, we'll wait until the endpoint finishes replying and feed you a fully-formed tool,
# even if you passed a partial_read_blk block. Invocations are strings that look like this:
#
# <function_calls>
# <invoke>
# <tool_name>get_weather</tool_name>
# <tool_id>get_weather</tool_id>
# <parameters>
# <location>Sydney</location>
# <unit>c</unit>
# </parameters>
# </invoke>
# </function_calls>
#
def generate(
prompt,
temperature: nil,
max_tokens: nil,
stop_sequences: nil,
user:,
&partial_read_blk
)
model_params = {
temperature: temperature,
max_tokens: max_tokens,
stop_sequences: stop_sequences,
}
if prompt.is_a?(String)
prompt =
DiscourseAi::Completions::Prompt.new(
"You are a helpful bot",
messages: [{ type: :user, content: prompt }],
)
elsif prompt.is_a?(Array)
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
end
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
end
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
dialect = dialect_klass.new(prompt, model_name, opts: model_params)
gateway.perform_completion!(dialect, user, model_params, &partial_read_blk)
end
def max_prompt_tokens
dialect_klass.new(DiscourseAi::Completions::Prompt.new(""), model_name).max_prompt_tokens
end
attr_reader :model_name
private
attr_reader :dialect_klass, :gateway
end
end
end