mirror of
https://github.com/discourse/discourse-ai.git
synced 2025-02-18 01:14:53 +00:00
1. Personas are now optionally mentionable, meaning that you can mention them either from public topics or PMs - Mentioning from PMs helps "switch" persona mid conversation, meaning if you want to look up sites setting you can invoke the site setting bot, or if you want to generate an image you can invoke dall e - Mentioning outside of PMs allows you to inject a bot reply in a topic trivially - We also add the support for max_context_posts this allow you to limit the amount of context you feed in, which can help control costs 2. Add support for a "random picker" tool that can be used to pick random numbers 3. Clean up routing ai_personas -> ai-personas 4. Add Max Context Posts so users can control how much history a persona can consume (this is important for mentionable personas) Co-authored-by: Martin Brennan <martin@discourse.org>
171 lines
6.0 KiB
Ruby
171 lines
6.0 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
# A facade that abstracts multiple LLMs behind a single interface.
|
|
#
|
|
# Internally, it consists of the combination of a dialect and an endpoint.
|
|
# After receiving a prompt using our generic format, it translates it to
|
|
# the target model and routes the completion request through the correct gateway.
|
|
#
|
|
# Use the .proxy method to instantiate an object.
|
|
# It chooses the correct dialect and endpoint for the model you want to interact with.
|
|
#
|
|
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
|
|
# instead of relying on WebMock stubs like we did in the past.
|
|
#
|
|
module DiscourseAi
|
|
module Completions
|
|
class Llm
|
|
UNKNOWN_MODEL = Class.new(StandardError)
|
|
|
|
class << self
|
|
def models_by_provider
|
|
# ChatGPT models are listed under open_ai but they are actually available through OpenAI and Azure.
|
|
# However, since they use the same URL/key settings, there's no reason to duplicate them.
|
|
@models_by_provider ||=
|
|
{
|
|
aws_bedrock: %w[claude-instant-1 claude-2],
|
|
anthropic: %w[claude-instant-1 claude-2],
|
|
vllm: %w[
|
|
mistralai/Mixtral-8x7B-Instruct-v0.1
|
|
mistralai/Mistral-7B-Instruct-v0.2
|
|
StableBeluga2
|
|
Upstage-Llama-2-*-instruct-v2
|
|
Llama2-*-chat-hf
|
|
Llama2-chat-hf
|
|
],
|
|
hugging_face: %w[
|
|
mistralai/Mixtral-8x7B-Instruct-v0.1
|
|
mistralai/Mistral-7B-Instruct-v0.2
|
|
StableBeluga2
|
|
Upstage-Llama-2-*-instruct-v2
|
|
Llama2-*-chat-hf
|
|
Llama2-chat-hf
|
|
],
|
|
open_ai: %w[gpt-3.5-turbo gpt-4 gpt-3.5-turbo-16k gpt-4-32k gpt-4-turbo],
|
|
google: %w[gemini-pro],
|
|
}.tap { |h| h[:fake] = ["fake"] if Rails.env.test? || Rails.env.development? }
|
|
end
|
|
|
|
def valid_provider_models
|
|
return @valid_provider_models if defined?(@valid_provider_models)
|
|
|
|
valid_provider_models = []
|
|
models_by_provider.each do |provider, models|
|
|
valid_provider_models.concat(models.map { |model| "#{provider}:#{model}" })
|
|
end
|
|
@valid_provider_models = Set.new(valid_provider_models)
|
|
end
|
|
|
|
def with_prepared_responses(responses, llm: nil)
|
|
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
|
|
@canned_llm = llm
|
|
|
|
yield(@canned_response, llm)
|
|
ensure
|
|
# Don't leak prepared response if there's an exception.
|
|
@canned_response = nil
|
|
@canned_llm = nil
|
|
end
|
|
|
|
def proxy(model_name)
|
|
provider_and_model_name = model_name.split(":")
|
|
|
|
provider_name = provider_and_model_name.first
|
|
model_name_without_prov = provider_and_model_name[1..].join
|
|
|
|
dialect_klass =
|
|
DiscourseAi::Completions::Dialects::Dialect.dialect_for(model_name_without_prov)
|
|
|
|
if @canned_response
|
|
if @canned_llm && @canned_llm != model_name
|
|
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model_name}"
|
|
end
|
|
return new(dialect_klass, @canned_response, model_name)
|
|
end
|
|
|
|
gateway =
|
|
DiscourseAi::Completions::Endpoints::Base.endpoint_for(
|
|
provider_name,
|
|
model_name_without_prov,
|
|
).new(model_name_without_prov, dialect_klass.tokenizer)
|
|
|
|
new(dialect_klass, gateway, model_name_without_prov)
|
|
end
|
|
end
|
|
|
|
def initialize(dialect_klass, gateway, model_name)
|
|
@dialect_klass = dialect_klass
|
|
@gateway = gateway
|
|
@model_name = model_name
|
|
end
|
|
|
|
delegate :tokenizer, to: :dialect_klass
|
|
|
|
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
|
|
# @param user { User } - User requesting the summary.
|
|
#
|
|
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
|
|
#
|
|
# @returns { String } - Completion result.
|
|
#
|
|
# When the model invokes a tool, we'll wait until the endpoint finishes replying and feed you a fully-formed tool,
|
|
# even if you passed a partial_read_blk block. Invocations are strings that look like this:
|
|
#
|
|
# <function_calls>
|
|
# <invoke>
|
|
# <tool_name>get_weather</tool_name>
|
|
# <tool_id>get_weather</tool_id>
|
|
# <parameters>
|
|
# <location>Sydney</location>
|
|
# <unit>c</unit>
|
|
# </parameters>
|
|
# </invoke>
|
|
# </function_calls>
|
|
#
|
|
def generate(
|
|
prompt,
|
|
temperature: nil,
|
|
top_p: nil,
|
|
max_tokens: nil,
|
|
stop_sequences: nil,
|
|
user:,
|
|
&partial_read_blk
|
|
)
|
|
model_params = { max_tokens: max_tokens, stop_sequences: stop_sequences }
|
|
|
|
model_params[:temperature] = temperature if temperature
|
|
model_params[:top_p] = top_p if top_p
|
|
|
|
if prompt.is_a?(String)
|
|
prompt =
|
|
DiscourseAi::Completions::Prompt.new(
|
|
"You are a helpful bot",
|
|
messages: [{ type: :user, content: prompt }],
|
|
)
|
|
elsif prompt.is_a?(Array)
|
|
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
|
|
end
|
|
|
|
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
|
|
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
|
|
end
|
|
|
|
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
|
|
|
|
dialect = dialect_klass.new(prompt, model_name, opts: model_params)
|
|
gateway.perform_completion!(dialect, user, model_params, &partial_read_blk)
|
|
end
|
|
|
|
def max_prompt_tokens
|
|
dialect_klass.new(DiscourseAi::Completions::Prompt.new(""), model_name).max_prompt_tokens
|
|
end
|
|
|
|
attr_reader :model_name
|
|
|
|
private
|
|
|
|
attr_reader :dialect_klass, :gateway
|
|
end
|
|
end
|
|
end
|