167 lines
5.6 KiB
Ruby
167 lines
5.6 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
module DiscourseAi
|
|
module Summarization
|
|
# This class offers a generic way of summarizing content from multiple sources using different prompts.
|
|
#
|
|
# It summarizes large amounts of content by recursively summarizing it in smaller chunks that
|
|
# fit the given model context window, finally concatenating the disjoint summaries
|
|
# into a final version.
|
|
#
|
|
class FoldContent
|
|
def initialize(llm, strategy, persist_summaries: true)
|
|
@llm = llm
|
|
@strategy = strategy
|
|
@persist_summaries = persist_summaries
|
|
end
|
|
|
|
attr_reader :llm, :strategy
|
|
|
|
# @param user { User } - User object used for auditing usage.
|
|
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
|
|
# Note: The block is only called with results of the final summary, not intermediate summaries.
|
|
#
|
|
# @returns { AiSummary } - Resulting summary.
|
|
def summarize(user, &on_partial_blk)
|
|
base_summary = ""
|
|
initial_pos = 0
|
|
|
|
truncated_content = content_to_summarize.map { |cts| truncate(cts) }
|
|
|
|
folded_summary = fold(truncated_content, base_summary, initial_pos, user, &on_partial_blk)
|
|
|
|
clean_summary =
|
|
Nokogiri::HTML5.fragment(folded_summary).css("ai")&.first&.text || folded_summary
|
|
|
|
if persist_summaries
|
|
AiSummary.store!(
|
|
strategy,
|
|
llm_model,
|
|
clean_summary,
|
|
truncated_content,
|
|
human: user&.human?,
|
|
)
|
|
else
|
|
AiSummary.new(summarized_text: clean_summary)
|
|
end
|
|
end
|
|
|
|
# @returns { AiSummary } - Resulting summary.
|
|
#
|
|
# Finds a summary matching the target and strategy. Marks it as outdated if the strategy found newer content
|
|
def existing_summary
|
|
if !defined?(@existing_summary)
|
|
summary = AiSummary.find_by(target: strategy.target, summary_type: strategy.type)
|
|
|
|
if summary
|
|
@existing_summary = summary
|
|
|
|
if existing_summary.original_content_sha != latest_sha
|
|
@existing_summary.mark_as_outdated
|
|
end
|
|
end
|
|
end
|
|
@existing_summary
|
|
end
|
|
|
|
def delete_cached_summaries!
|
|
AiSummary.where(target: strategy.target, summary_type: strategy.type).destroy_all
|
|
end
|
|
|
|
def force_summarize(user, &on_partial_blk)
|
|
delete_cached_summaries!
|
|
summarize(user, &on_partial_blk)
|
|
end
|
|
|
|
private
|
|
|
|
attr_reader :persist_summaries
|
|
|
|
def llm_model
|
|
llm.llm_model
|
|
end
|
|
|
|
def content_to_summarize
|
|
@targets_data ||= strategy.targets_data
|
|
end
|
|
|
|
def latest_sha
|
|
@latest_sha ||= AiSummary.build_sha(content_to_summarize.map { |c| c[:id] }.join)
|
|
end
|
|
|
|
# @param items { Array<Hash> } - Content to summarize. Structure will be: { poster: who wrote the content, id: a way to order content, text: content }
|
|
# @param summary { String } - Intermediate summaries that we'll keep extending as part of our "folding" algorithm.
|
|
# @param cursor { Integer } - Idx to know how much we already summarized.
|
|
# @param user { User } - User object used for auditing usage.
|
|
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
|
|
# Note: The block is only called with results of the final summary, not intermediate summaries.
|
|
#
|
|
# The summarization algorithm.
|
|
# The idea is to build an initial summary packing as much content as we can. Once we have the initial summary, we'll keep extending using the leftover
|
|
# content until there is nothing left.
|
|
#
|
|
# @returns { String } - Resulting summary.
|
|
def fold(items, summary, cursor, user, &on_partial_blk)
|
|
tokenizer = llm_model.tokenizer_class
|
|
tokens_left = available_tokens - tokenizer.size(summary)
|
|
iteration_content = []
|
|
|
|
items.each_with_index do |item, idx|
|
|
next if idx < cursor
|
|
|
|
as_text = "(#{item[:id]} #{item[:poster]} said: #{item[:text]} "
|
|
|
|
if tokenizer.below_limit?(as_text, tokens_left)
|
|
iteration_content << item
|
|
tokens_left -= tokenizer.size(as_text)
|
|
cursor += 1
|
|
else
|
|
break
|
|
end
|
|
end
|
|
|
|
prompt =
|
|
(
|
|
if summary.blank?
|
|
strategy.first_summary_prompt(iteration_content)
|
|
else
|
|
strategy.summary_extension_prompt(summary, iteration_content)
|
|
end
|
|
)
|
|
|
|
if cursor == items.length
|
|
llm.generate(prompt, user: user, feature_name: strategy.feature, &on_partial_blk)
|
|
else
|
|
latest_summary =
|
|
llm.generate(prompt, user: user, max_tokens: 600, feature_name: strategy.feature)
|
|
fold(items, latest_summary, cursor, user, &on_partial_blk)
|
|
end
|
|
end
|
|
|
|
def available_tokens
|
|
# Reserve tokens for the response and the base prompt
|
|
# ~500 words
|
|
reserved_tokens = 700
|
|
|
|
llm_model.max_prompt_tokens - reserved_tokens
|
|
end
|
|
|
|
def truncate(item)
|
|
item_content = item[:text].to_s
|
|
split_1, split_2 =
|
|
[item_content[0, item_content.size / 2], item_content[(item_content.size / 2)..-1]]
|
|
|
|
truncation_length = 500
|
|
tokenizer = llm_model.tokenizer_class
|
|
|
|
item[:text] = [
|
|
tokenizer.truncate(split_1, truncation_length),
|
|
tokenizer.truncate(split_2.reverse, truncation_length).reverse,
|
|
].join(" ")
|
|
|
|
item
|
|
end
|
|
end
|
|
end
|
|
end
|