Roman Rizzi 534b0df391
REFACTOR: Separation of concerns for embedding generation. (#1027)
In a previous refactor, we moved the responsibility of querying and storing embeddings into the `Schema` class. Now, it's time for embedding generation.

The motivation behind these changes is to isolate vector characteristics in simple objects to later replace them with a DB-backed version, similar to what we did with LLM configs.
2024-12-16 09:55:39 -03:00

57 lines
1.2 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module Embeddings
module VectorRepresentations
class AllMpnetBaseV2 < Base
class << self
def name
"all-mpnet-base-v2"
end
def correctly_configured?
SiteSetting.ai_embeddings_discourse_service_api_endpoint_srv.present? ||
SiteSetting.ai_embeddings_discourse_service_api_endpoint.present?
end
def dependant_setting_names
%w[
ai_embeddings_discourse_service_api_key
ai_embeddings_discourse_service_api_endpoint_srv
ai_embeddings_discourse_service_api_endpoint
]
end
end
def dimensions
768
end
def max_sequence_length
384
end
def id
1
end
def version
1
end
def pg_function
"<#>"
end
def tokenizer
DiscourseAi::Tokenizer::AllMpnetBaseV2Tokenizer
end
def inference_client
DiscourseAi::Inference::DiscourseClassifier.instance(self.class.name)
end
end
end
end
end