discourse-ai/lib/completions/llm.rb

220 lines
7.6 KiB
Ruby

# frozen_string_literal: true
# A facade that abstracts multiple LLMs behind a single interface.
#
# Internally, it consists of the combination of a dialect and an endpoint.
# After receiving a prompt using our generic format, it translates it to
# the target model and routes the completion request through the correct gateway.
#
# Use the .proxy method to instantiate an object.
# It chooses the correct dialect and endpoint for the model you want to interact with.
#
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
# instead of relying on WebMock stubs like we did in the past.
#
module DiscourseAi
module Completions
class Llm
UNKNOWN_MODEL = Class.new(StandardError)
class << self
def provider_names
%w[aws_bedrock anthropic vllm hugging_face cohere open_ai google azure]
end
def tokenizer_names
DiscourseAi::Completions::Dialects::Dialect.available_tokenizers.map(&:name).uniq
end
def models_by_provider
# ChatGPT models are listed under open_ai but they are actually available through OpenAI and Azure.
# However, since they use the same URL/key settings, there's no reason to duplicate them.
@models_by_provider ||=
{
aws_bedrock: %w[
claude-instant-1
claude-2
claude-3-haiku
claude-3-sonnet
claude-3-opus
],
anthropic: %w[claude-instant-1 claude-2 claude-3-haiku claude-3-sonnet claude-3-opus],
vllm: %w[mistralai/Mixtral-8x7B-Instruct-v0.1 mistralai/Mistral-7B-Instruct-v0.2],
hugging_face: %w[
mistralai/Mixtral-8x7B-Instruct-v0.1
mistralai/Mistral-7B-Instruct-v0.2
],
cohere: %w[command-light command command-r command-r-plus],
open_ai: %w[
gpt-3.5-turbo
gpt-4
gpt-3.5-turbo-16k
gpt-4-32k
gpt-4-turbo
gpt-4-vision-preview
],
google: %w[gemini-pro gemini-1.5-pro],
}.tap do |h|
h[:ollama] = ["mistral"] if Rails.env.development?
h[:fake] = ["fake"] if Rails.env.test? || Rails.env.development?
end
end
def valid_provider_models
return @valid_provider_models if defined?(@valid_provider_models)
valid_provider_models = []
models_by_provider.each do |provider, models|
valid_provider_models.concat(models.map { |model| "#{provider}:#{model}" })
end
@valid_provider_models = Set.new(valid_provider_models)
end
def with_prepared_responses(responses, llm: nil)
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
@canned_llm = llm
@prompts = []
yield(@canned_response, llm, @prompts)
ensure
# Don't leak prepared response if there's an exception.
@canned_response = nil
@canned_llm = nil
@prompts = nil
end
def record_prompt(prompt)
@prompts << prompt if @prompts
end
def proxy(model_name)
# We are in the process of transitioning to always use objects here.
# We'll live with this hack for a while.
provider_and_model_name = model_name.split(":")
provider_name = provider_and_model_name.first
model_name_without_prov = provider_and_model_name[1..].join
is_custom_model = provider_name == "custom"
if is_custom_model
llm_model = LlmModel.find(model_name_without_prov)
provider_name = llm_model.provider
model_name_without_prov = llm_model.name
end
dialect_klass =
DiscourseAi::Completions::Dialects::Dialect.dialect_for(model_name_without_prov)
if is_custom_model
tokenizer = llm_model.tokenizer_class
else
tokenizer = dialect_klass.tokenizer
end
if @canned_response
if @canned_llm && @canned_llm != model_name
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model_name}"
end
return new(dialect_klass, nil, model_name, opts: { gateway: @canned_response })
end
opts = {}
opts[:max_prompt_tokens] = llm_model.max_prompt_tokens if is_custom_model
gateway_klass =
DiscourseAi::Completions::Endpoints::Base.endpoint_for(
provider_name,
model_name_without_prov,
)
new(dialect_klass, gateway_klass, model_name_without_prov, opts: opts)
end
end
def initialize(dialect_klass, gateway_klass, model_name, opts: {})
@dialect_klass = dialect_klass
@gateway_klass = gateway_klass
@model_name = model_name
@gateway = opts[:gateway]
@max_prompt_tokens = opts[:max_prompt_tokens]
end
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
# @param user { User } - User requesting the summary.
#
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
#
# @returns { String } - Completion result.
#
# When the model invokes a tool, we'll wait until the endpoint finishes replying and feed you a fully-formed tool,
# even if you passed a partial_read_blk block. Invocations are strings that look like this:
#
# <function_calls>
# <invoke>
# <tool_name>get_weather</tool_name>
# <tool_id>get_weather</tool_id>
# <parameters>
# <location>Sydney</location>
# <unit>c</unit>
# </parameters>
# </invoke>
# </function_calls>
#
def generate(
prompt,
temperature: nil,
top_p: nil,
max_tokens: nil,
stop_sequences: nil,
user:,
&partial_read_blk
)
self.class.record_prompt(prompt)
model_params = { max_tokens: max_tokens, stop_sequences: stop_sequences }
model_params[:temperature] = temperature if temperature
model_params[:top_p] = top_p if top_p
if prompt.is_a?(String)
prompt =
DiscourseAi::Completions::Prompt.new(
"You are a helpful bot",
messages: [{ type: :user, content: prompt }],
)
elsif prompt.is_a?(Array)
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
end
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
end
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
gateway = @gateway || gateway_klass.new(model_name, dialect_klass.tokenizer)
dialect =
dialect_klass.new(
prompt,
model_name,
opts: model_params.merge(max_prompt_tokens: @max_prompt_tokens),
)
gateway.perform_completion!(dialect, user, model_params, &partial_read_blk)
end
def max_prompt_tokens
return @max_prompt_tokens if @max_prompt_tokens.present?
dialect_klass.new(DiscourseAi::Completions::Prompt.new(""), model_name).max_prompt_tokens
end
delegate :tokenizer, to: :dialect_klass
attr_reader :model_name
private
attr_reader :dialect_klass, :gateway_klass
end
end
end