mirror of
https://github.com/discourse/discourse-ai.git
synced 2025-02-19 18:04:51 +00:00
* FEATURE: allows forced LLM tool use Sometimes we need to force LLMs to use tools, for example in RAG like use cases we may want to force an unconditional search. The new framework allows you backend to force tool usage. Front end commit to follow * UI for forcing tools now works, but it does not react right * fix bugs * fix tests, this is now ready for review
247 lines
8.1 KiB
Ruby
247 lines
8.1 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
# A facade that abstracts multiple LLMs behind a single interface.
|
|
#
|
|
# Internally, it consists of the combination of a dialect and an endpoint.
|
|
# After receiving a prompt using our generic format, it translates it to
|
|
# the target model and routes the completion request through the correct gateway.
|
|
#
|
|
# Use the .proxy method to instantiate an object.
|
|
# It chooses the correct dialect and endpoint for the model you want to interact with.
|
|
#
|
|
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
|
|
# instead of relying on WebMock stubs like we did in the past.
|
|
#
|
|
module DiscourseAi
|
|
module Completions
|
|
class Llm
|
|
UNKNOWN_MODEL = Class.new(StandardError)
|
|
|
|
class << self
|
|
def presets
|
|
# Sam: I am not sure if it makes sense to translate model names at all
|
|
@presets ||=
|
|
begin
|
|
[
|
|
{
|
|
id: "anthropic",
|
|
models: [
|
|
{
|
|
name: "claude-3-5-sonnet",
|
|
tokens: 200_000,
|
|
display_name: "Claude 3.5 Sonnet",
|
|
},
|
|
{ name: "claude-3-opus", tokens: 200_000, display_name: "Claude 3 Opus" },
|
|
{ name: "claude-3-sonnet", tokens: 200_000, display_name: "Claude 3 Sonnet" },
|
|
{ name: "claude-3-haiku", tokens: 200_000, display_name: "Claude 3 Haiku" },
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::AnthropicTokenizer,
|
|
endpoint: "https://api.anthropic.com/v1/messages",
|
|
provider: "anthropic",
|
|
},
|
|
{
|
|
id: "google",
|
|
models: [
|
|
{
|
|
name: "gemini-1.5-pro",
|
|
tokens: 800_000,
|
|
endpoint:
|
|
"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest",
|
|
display_name: "Gemini 1.5 Pro",
|
|
},
|
|
{
|
|
name: "gemini-1.5-flash",
|
|
tokens: 800_000,
|
|
endpoint:
|
|
"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest",
|
|
display_name: "Gemini 1.5 Flash",
|
|
},
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::OpenAiTokenizer,
|
|
provider: "google",
|
|
},
|
|
{
|
|
id: "open_ai",
|
|
models: [
|
|
{ name: "gpt-4o", tokens: 131_072, display_name: "GPT-4 Omni" },
|
|
{ name: "gpt-4o-mini", tokens: 131_072, display_name: "GPT-4 Omni Mini" },
|
|
{ name: "gpt-4-turbo", tokens: 131_072, display_name: "GPT-4 Turbo" },
|
|
],
|
|
tokenizer: DiscourseAi::Tokenizer::OpenAiTokenizer,
|
|
endpoint: "https://api.openai.com/v1/chat/completions",
|
|
provider: "open_ai",
|
|
},
|
|
]
|
|
end
|
|
end
|
|
|
|
def provider_names
|
|
providers = %w[
|
|
aws_bedrock
|
|
anthropic
|
|
vllm
|
|
hugging_face
|
|
cohere
|
|
open_ai
|
|
google
|
|
azure
|
|
samba_nova
|
|
]
|
|
if !Rails.env.production?
|
|
providers << "fake"
|
|
providers << "ollama"
|
|
end
|
|
|
|
providers
|
|
end
|
|
|
|
def tokenizer_names
|
|
DiscourseAi::Tokenizer::BasicTokenizer.available_llm_tokenizers.map(&:name)
|
|
end
|
|
|
|
def valid_provider_models
|
|
return @valid_provider_models if defined?(@valid_provider_models)
|
|
|
|
valid_provider_models = []
|
|
models_by_provider.each do |provider, models|
|
|
valid_provider_models.concat(models.map { |model| "#{provider}:#{model}" })
|
|
end
|
|
@valid_provider_models = Set.new(valid_provider_models)
|
|
end
|
|
|
|
def with_prepared_responses(responses, llm: nil)
|
|
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
|
|
@canned_llm = llm
|
|
@prompts = []
|
|
|
|
yield(@canned_response, llm, @prompts)
|
|
ensure
|
|
# Don't leak prepared response if there's an exception.
|
|
@canned_response = nil
|
|
@canned_llm = nil
|
|
@prompts = nil
|
|
end
|
|
|
|
def record_prompt(prompt)
|
|
@prompts << prompt.dup if @prompts
|
|
end
|
|
|
|
def proxy(model)
|
|
llm_model =
|
|
if model.is_a?(LlmModel)
|
|
model
|
|
else
|
|
model_name_without_prov = model.split(":").last.to_i
|
|
|
|
LlmModel.find_by(id: model_name_without_prov)
|
|
end
|
|
|
|
raise UNKNOWN_MODEL if llm_model.nil?
|
|
|
|
model_provider = llm_model.provider
|
|
dialect_klass = DiscourseAi::Completions::Dialects::Dialect.dialect_for(model_provider)
|
|
|
|
if @canned_response
|
|
if @canned_llm && @canned_llm != model
|
|
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model}"
|
|
end
|
|
|
|
return new(dialect_klass, nil, llm_model, gateway: @canned_response)
|
|
end
|
|
|
|
gateway_klass = DiscourseAi::Completions::Endpoints::Base.endpoint_for(model_provider)
|
|
|
|
new(dialect_klass, gateway_klass, llm_model)
|
|
end
|
|
end
|
|
|
|
def initialize(dialect_klass, gateway_klass, llm_model, gateway: nil)
|
|
@dialect_klass = dialect_klass
|
|
@gateway_klass = gateway_klass
|
|
@gateway = gateway
|
|
@llm_model = llm_model
|
|
end
|
|
|
|
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
|
|
# @param user { User } - User requesting the summary.
|
|
#
|
|
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
|
|
#
|
|
# @returns { String } - Completion result.
|
|
#
|
|
# When the model invokes a tool, we'll wait until the endpoint finishes replying and feed you a fully-formed tool,
|
|
# even if you passed a partial_read_blk block. Invocations are strings that look like this:
|
|
#
|
|
# <function_calls>
|
|
# <invoke>
|
|
# <tool_name>get_weather</tool_name>
|
|
# <tool_id>get_weather</tool_id>
|
|
# <parameters>
|
|
# <location>Sydney</location>
|
|
# <unit>c</unit>
|
|
# </parameters>
|
|
# </invoke>
|
|
# </function_calls>
|
|
#
|
|
def generate(
|
|
prompt,
|
|
temperature: nil,
|
|
top_p: nil,
|
|
max_tokens: nil,
|
|
stop_sequences: nil,
|
|
user:,
|
|
feature_name: nil,
|
|
&partial_read_blk
|
|
)
|
|
self.class.record_prompt(prompt)
|
|
|
|
model_params = { max_tokens: max_tokens, stop_sequences: stop_sequences }
|
|
|
|
model_params[:temperature] = temperature if temperature
|
|
model_params[:top_p] = top_p if top_p
|
|
|
|
if prompt.is_a?(String)
|
|
prompt =
|
|
DiscourseAi::Completions::Prompt.new(
|
|
"You are a helpful bot",
|
|
messages: [{ type: :user, content: prompt }],
|
|
)
|
|
elsif prompt.is_a?(Array)
|
|
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
|
|
end
|
|
|
|
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
|
|
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
|
|
end
|
|
|
|
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
|
|
|
|
dialect = dialect_klass.new(prompt, llm_model, opts: model_params)
|
|
|
|
gateway = @gateway || gateway_klass.new(llm_model)
|
|
gateway.perform_completion!(
|
|
dialect,
|
|
user,
|
|
model_params,
|
|
feature_name: feature_name,
|
|
&partial_read_blk
|
|
)
|
|
end
|
|
|
|
def max_prompt_tokens
|
|
llm_model.max_prompt_tokens
|
|
end
|
|
|
|
def tokenizer
|
|
llm_model.tokenizer_class
|
|
end
|
|
|
|
attr_reader :llm_model
|
|
|
|
private
|
|
|
|
attr_reader :dialect_klass, :gateway_klass
|
|
end
|
|
end
|
|
end
|