discourse-ai/app/jobs/regular/generate_rag_embeddings.rb

28 lines
1.0 KiB
Ruby

# frozen_string_literal: true
module ::Jobs
class GenerateRagEmbeddings < ::Jobs::Base
sidekiq_options queue: "ultra_low"
# we could also restrict concurrency but this takes so long if it is not concurrent
def execute(args)
return if (fragments = RagDocumentFragment.where(id: args[:fragment_ids].to_a)).empty?
truncation = DiscourseAi::Embeddings::Strategies::Truncation.new
vector_rep =
DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(truncation)
# generate_representation_from checks compares the digest value to make sure
# the embedding is only generated once per fragment unless something changes.
fragments.map { |fragment| vector_rep.generate_representation_from(fragment) }
last_fragment = fragments.last
target = last_fragment.target
upload = last_fragment.upload
indexing_status = RagDocumentFragment.indexing_status(target, [upload])[upload.id]
RagDocumentFragment.publish_status(upload, indexing_status)
end
end
end