Roman Rizzi 4f1a3effe0
REFACTOR: Migrate Vllm/TGI-served models to the OpenAI format. (#588)
Both endpoints provide OpenAI-compatible servers. The only difference is that Vllm doesn't support passing tools as a separate parameter. Even if the tool param is supported, it ultimately relies on the model's ability to handle native functions, which is not the case with the models we have today.

As a part of this change, we are dropping support for StableBeluga/Llama2 models. They don't have a chat_template, meaning the new API can translate them.

These changes let us remove some of our existing dialects and are a first step in our plan to support any LLM by defining them as data-driven concepts.

 I rewrote the "translate" method to use a template method and extracted the tool support strategies into its classes to simplify the code.

Finally, these changes bring support for Ollama when running in dev mode. It only works with Mistral for now, but it will change soon..
2024-05-07 10:02:16 -03:00

113 lines
3.3 KiB
Ruby

# frozen_string_literal: true
require_relative "endpoint_compliance"
class VllmMock < EndpointMock
def response(content)
{
id: "cmpl-6sZfAb30Rnv9Q7ufzFwvQsMpjZh8S",
object: "chat.completion",
created: 1_678_464_820,
model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
usage: {
prompt_tokens: 337,
completion_tokens: 162,
total_tokens: 499,
},
choices: [
{ message: { role: "assistant", content: content }, finish_reason: "stop", index: 0 },
],
}
end
def stub_response(prompt, response_text, tool_call: false)
WebMock
.stub_request(:post, "#{SiteSetting.ai_vllm_endpoint}/v1/chat/completions")
.with(body: model.default_options.merge(messages: prompt).to_json)
.to_return(status: 200, body: JSON.dump(response(response_text)))
end
def stream_line(delta, finish_reason: nil)
+"data: " << {
id: "cmpl-#{SecureRandom.hex}",
created: 1_681_283_881,
model: "mistralai/Mixtral-8x7B-Instruct-v0.1",
choices: [{ delta: { content: delta } }],
index: 0,
}.to_json
end
def stub_streamed_response(prompt, deltas, tool_call: false)
chunks =
deltas.each_with_index.map do |_, index|
if index == (deltas.length - 1)
stream_line(deltas[index], finish_reason: "stop_sequence")
else
stream_line(deltas[index])
end
end
chunks = (chunks.join("\n\n") << "data: [DONE]").split("")
WebMock
.stub_request(:post, "#{SiteSetting.ai_vllm_endpoint}/v1/chat/completions")
.with(body: model.default_options.merge(messages: prompt, stream: true).to_json)
.to_return(status: 200, body: chunks)
end
end
RSpec.describe DiscourseAi::Completions::Endpoints::Vllm do
subject(:endpoint) do
described_class.new(
"mistralai/Mixtral-8x7B-Instruct-v0.1",
DiscourseAi::Tokenizer::MixtralTokenizer,
)
end
fab!(:user)
let(:anthropic_mock) { VllmMock.new(endpoint) }
let(:compliance) do
EndpointsCompliance.new(self, endpoint, DiscourseAi::Completions::Dialects::Mistral, user)
end
let(:dialect) { DiscourseAi::Completions::Dialects::Mistral.new(generic_prompt, model_name) }
let(:prompt) { dialect.translate }
let(:request_body) { model.default_options.merge(messages: prompt).to_json }
let(:stream_request_body) { model.default_options.merge(messages: prompt, stream: true).to_json }
before { SiteSetting.ai_vllm_endpoint = "https://test.dev" }
describe "#perform_completion!" do
context "when using regular mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.regular_mode_simple_prompt(anthropic_mock)
end
end
context "with tools" do
it "returns a function invocation" do
compliance.regular_mode_tools(anthropic_mock)
end
end
end
describe "when using streaming mode" do
context "with simple prompts" do
it "completes a trivial prompt and logs the response" do
compliance.streaming_mode_simple_prompt(anthropic_mock)
end
end
context "with tools" do
it "returns a function invoncation" do
compliance.streaming_mode_tools(anthropic_mock)
end
end
end
end
end