discourse-ai/lib/completions/endpoints/gemini.rb

201 lines
5.2 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module Completions
module Endpoints
class Gemini < Base
class << self
def can_contact?(endpoint_name)
endpoint_name == "google"
end
def dependant_setting_names
%w[ai_gemini_api_key]
end
def correctly_configured?(_model_name)
SiteSetting.ai_gemini_api_key.present?
end
def endpoint_name(model_name)
"Google - #{model_name}"
end
end
def default_options
{ generationConfig: {} }
end
def normalize_model_params(model_params)
model_params = model_params.dup
if model_params[:stop_sequences]
model_params[:stopSequences] = model_params.delete(:stop_sequences)
end
if model_params[:max_tokens]
model_params[:maxOutputTokens] = model_params.delete(:max_tokens)
end
model_params[:topP] = model_params.delete(:top_p) if model_params[:top_p]
# temperature already supported
model_params
end
def provider_id
AiApiAuditLog::Provider::Gemini
end
private
def model_uri
if llm_model
url = llm_model.url
else
mapped_model = model
if model == "gemini-1.5-pro"
mapped_model = "gemini-1.5-pro-latest"
elsif model == "gemini-1.5-flash"
mapped_model = "gemini-1.5-flash-latest"
elsif model == "gemini-1.0-pro"
mapped_model = "gemini-pro-latest"
end
url = "https://generativelanguage.googleapis.com/v1beta/models/#{mapped_model}"
end
key = llm_model&.api_key || SiteSetting.ai_gemini_api_key
if @streaming_mode
url = "#{url}:streamGenerateContent?key=#{key}&alt=sse"
else
url = "#{url}:generateContent?key=#{key}"
end
URI(url)
end
def prepare_payload(prompt, model_params, dialect)
tools = dialect.tools
payload = default_options.merge(contents: prompt[:messages])
payload[:systemInstruction] = {
role: "system",
parts: [{ text: prompt[:system_instruction].to_s }],
} if prompt[:system_instruction].present?
payload[:tools] = tools if tools.present?
payload[:generationConfig].merge!(model_params) if model_params.present?
payload
end
def prepare_request(payload)
headers = { "Content-Type" => "application/json" }
Net::HTTP::Post.new(model_uri, headers).tap { |r| r.body = payload }
end
def extract_completion_from(response_raw)
parsed =
if @streaming_mode
response_raw
else
JSON.parse(response_raw, symbolize_names: true)
end
response_h = parsed.dig(:candidates, 0, :content, :parts, 0)
@has_function_call ||= response_h.dig(:functionCall).present?
@has_function_call ? response_h[:functionCall] : response_h.dig(:text)
end
def partials_from(decoded_chunk)
decoded_chunk
end
def chunk_to_string(chunk)
chunk.to_s
end
class Decoder
def initialize
@buffer = +""
end
def decode(str)
@buffer << str
lines = @buffer.split(/\r?\n\r?\n/)
keep_last = false
decoded =
lines
.map do |line|
if line.start_with?("data: {")
begin
JSON.parse(line[6..-1], symbolize_names: true)
rescue JSON::ParserError
keep_last = line
nil
end
else
keep_last = line
nil
end
end
.compact
if keep_last
@buffer = +(keep_last)
else
@buffer = +""
end
decoded
end
end
def decode(chunk)
@decoder ||= Decoder.new
@decoder.decode(chunk)
end
def extract_prompt_for_tokenizer(prompt)
prompt.to_s
end
def has_tool?(_response_data)
@has_function_call
end
def native_tool_support?
true
end
def add_to_function_buffer(function_buffer, payload: nil, partial: nil)
if @streaming_mode
return function_buffer if !partial
else
partial = payload
end
function_buffer.at("tool_name").content = partial[:name] if partial[:name].present?
if partial[:args]
argument_fragments =
partial[:args].reduce(+"") do |memo, (arg_name, value)|
memo << "\n<#{arg_name}>#{value}</#{arg_name}>"
end
argument_fragments << "\n"
function_buffer.at("parameters").children =
Nokogiri::HTML5::DocumentFragment.parse(argument_fragments)
end
function_buffer
end
end
end
end
end