discourse-ai/lib/modules/ai_helper/llm_prompt.rb

165 lines
4.4 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module AiHelper
class LlmPrompt
def available_prompts(name_filter: nil)
cp = CompletionPrompt
cp = cp.where(name: name_filter) if name_filter.present?
cp
.where(provider: enabled_provider)
.where(enabled: true)
.map do |prompt|
translation =
I18n.t("discourse_ai.ai_helper.prompts.#{prompt.name}", default: nil) ||
prompt.translated_name || prompt.name
{
id: prompt.id,
name: prompt.name,
translated_name: translation,
prompt_type: prompt.prompt_type,
icon: icon_map(prompt.name),
}
end
end
def generate_and_send_prompt(prompt, params)
case enabled_provider
when "openai"
openai_call(prompt, params)
when "anthropic"
anthropic_call(prompt, params)
when "huggingface"
huggingface_call(prompt, params)
end
end
def enabled_provider
case SiteSetting.ai_helper_model
when /gpt/
"openai"
when /claude/
"anthropic"
else
"huggingface"
end
end
private
def icon_map(name)
case name
when "translate"
"language"
when "generate_titles"
"heading"
when "proofread"
"spell-check"
when "markdown_table"
"table"
when "tone"
"microphone"
when "custom_prompt"
"comment"
when "rewrite"
"pen"
else
nil
end
end
def generate_diff(text, suggestion)
cooked_text = PrettyText.cook(text)
cooked_suggestion = PrettyText.cook(suggestion)
DiscourseDiff.new(cooked_text, cooked_suggestion).inline_html
end
def parse_content(prompt, content)
return "" if content.blank?
case enabled_provider
when "openai"
return content.strip if !prompt.list?
content.gsub("\"", "").gsub(/\d./, "").split("\n").map(&:strip)
when "anthropic"
parse_antropic_content(prompt, content)
when "huggingface"
return [content.strip.delete_prefix('"').delete_suffix('"')] if !prompt.list?
content.gsub("\"", "").gsub(/\d./, "").split("\n").map(&:strip)
end
end
def openai_call(prompt, params)
result = { type: prompt.prompt_type }
messages = prompt.messages_with_user_input(params)
result[:suggestions] = DiscourseAi::Inference::OpenAiCompletions
.perform!(messages, SiteSetting.ai_helper_model)
.dig(:choices)
.to_a
.flat_map { |choice| parse_content(prompt, choice.dig(:message, :content).to_s) }
.compact_blank
result[:diff] = generate_diff(params[:text], result[:suggestions].first) if prompt.diff?
result
end
def anthropic_call(prompt, params)
result = { type: prompt.prompt_type }
filled_message = prompt.messages_with_user_input(params)
message =
filled_message.map { |msg| "#{msg["role"]}: #{msg["content"]}" }.join("\n\n") +
"Assistant:"
response = DiscourseAi::Inference::AnthropicCompletions.perform!(message)
result[:suggestions] = parse_content(prompt, response.dig(:completion))
result[:diff] = generate_diff(params[:text], result[:suggestions].first) if prompt.diff?
result
end
def huggingface_call(prompt, params)
result = { type: prompt.prompt_type }
message = prompt.messages_with_user_input(params)
response =
DiscourseAi::Inference::HuggingFaceTextGeneration.perform!(
message,
SiteSetting.ai_helper_model,
)
result[:suggestions] = parse_content(prompt, response.dig(:generated_text))
result[:diff] = generate_diff(params[:text], result[:suggestions].first) if prompt.diff?
result
end
def parse_antropic_content(prompt, content)
if prompt.list?
suggestions = Nokogiri::HTML5.fragment(content).search("ai").map(&:text)
if suggestions.length > 1
suggestions
else
suggestions.first.split("\n").map(&:strip)
end
else
[Nokogiri::HTML5.fragment(content).at("ai").text]
end
end
end
end
end