discourse-ai/lib/summarization/strategies/fold_content.rb

199 lines
7.1 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module Summarization
module Strategies
class FoldContent
def initialize(completion_model)
@llm = DiscourseAi::Completions::Llm.proxy(completion_model)
raise "Invalid model provided for summarization strategy" if @llm.llm_model.nil?
end
attr_reader :llm
def summarize(content, user, &on_partial_blk)
opts = content.except(:contents)
initial_chunks =
rebalance_chunks(
content[:contents].map { |c| { ids: [c[:id]], summary: format_content_item(c) } },
)
# Special case where we can do all the summarization in one pass.
if initial_chunks.length == 1
{
summary:
summarize_single(initial_chunks.first[:summary], user, opts, &on_partial_blk),
chunks: [],
}
else
summarize_chunks(initial_chunks, user, opts, &on_partial_blk)
end
end
def display_name
llm_model&.name || "unknown model"
end
private
def llm_model
llm.llm_model
end
def summarize_chunks(chunks, user, opts, &on_partial_blk)
# Safely assume we always have more than one chunk.
summarized_chunks = summarize_in_chunks(chunks, user, opts)
total_summaries_size =
llm_model.tokenizer_class.size(summarized_chunks.map { |s| s[:summary].to_s }.join)
if total_summaries_size < available_tokens
# Chunks are small enough, we can concatenate them.
{
summary:
concatenate_summaries(
summarized_chunks.map { |s| s[:summary] },
user,
&on_partial_blk
),
chunks: summarized_chunks,
}
else
# We have summarized chunks but we can't concatenate them yet. Split them into smaller summaries and summarize again.
rebalanced_chunks = rebalance_chunks(summarized_chunks)
summarize_chunks(rebalanced_chunks, user, opts, &on_partial_blk)
end
end
def format_content_item(item)
"(#{item[:id]} #{item[:poster]} said: #{item[:text]} "
end
def rebalance_chunks(chunks)
section = { ids: [], summary: "" }
chunks =
chunks.reduce([]) do |sections, chunk|
if llm_model.tokenizer_class.can_expand_tokens?(
section[:summary],
chunk[:summary],
available_tokens,
)
section[:summary] += chunk[:summary]
section[:ids] = section[:ids].concat(chunk[:ids])
else
sections << section
section = chunk
end
sections
end
chunks << section if section[:summary].present?
chunks
end
def summarize_single(text, user, opts, &on_partial_blk)
prompt = summarization_prompt(text, opts)
llm.generate(prompt, user: user, feature_name: "summarize", &on_partial_blk)
end
def summarize_in_chunks(chunks, user, opts)
chunks.map do |chunk|
prompt = summarization_prompt(chunk[:summary], opts)
chunk[:summary] = llm.generate(
prompt,
user: user,
max_tokens: 300,
feature_name: "summarize",
)
chunk
end
end
def concatenate_summaries(summaries, user, &on_partial_blk)
prompt = DiscourseAi::Completions::Prompt.new(<<~TEXT.strip)
You are a summarization bot that effectively concatenates disjoint summaries, creating a cohesive narrative.
The narrative you create is in the form of one or multiple paragraphs.
Your reply MUST BE a single concatenated summary using the summaries I'll provide to you.
I'm NOT interested in anything other than the concatenated summary, don't include additional text or comments.
You understand and generate Discourse forum Markdown.
You format the response, including links, using Markdown.
TEXT
prompt.push(type: :user, content: <<~TEXT.strip)
THESE are the summaries, each one separated by a newline, all of them inside <input></input> XML tags:
<input>
#{summaries.join("\n")}
</input>
TEXT
llm.generate(prompt, user: user, &on_partial_blk)
end
def summarization_prompt(input, opts)
insts = +<<~TEXT
You are an advanced summarization bot that generates concise, coherent summaries of provided text.
- Only include the summary, without any additional commentary.
- You understand and generate Discourse forum Markdown; including links, _italics_, **bold**.
- Maintain the original language of the text being summarized.
- Aim for summaries to be 400 words or less.
TEXT
insts << <<~TEXT if opts[:resource_path]
- Each post is formatted as "<POST_NUMBER>) <USERNAME> <MESSAGE>"
- Cite specific noteworthy posts using the format [NAME](#{opts[:resource_path]}/POST_NUMBER)
- Example: link to the 3rd post by sam: [sam](#{opts[:resource_path]}/3)
- Example: link to the 6th post by jane: [agreed with](#{opts[:resource_path]}/6)
- Example: link to the 13th post by joe: [#13](#{opts[:resource_path]}/13)
- When formatting usernames either use @USERNMAE OR [USERNAME](#{opts[:resource_path]}/POST_NUMBER)
TEXT
prompt = DiscourseAi::Completions::Prompt.new(insts.strip)
if opts[:resource_path]
prompt.push(
type: :user,
content:
"Here are the posts inside <input></input> XML tags:\n\n<input>1) user1 said: I love Mondays 2) user2 said: I hate Mondays</input>\n\nGenerate a concise, coherent summary of the text above maintaining the original language.",
)
prompt.push(
type: :model,
content:
"Two users are sharing their feelings toward Mondays. [user1](#{opts[:resource_path]}/1) hates them, while [user2](#{opts[:resource_path]}/2) loves them.",
)
end
prompt.push(type: :user, content: <<~TEXT.strip)
#{opts[:content_title].present? ? "The discussion title is: " + opts[:content_title] + ".\n" : ""}
Here are the posts, inside <input></input> XML tags:
<input>
#{input}
</input>
Generate a concise, coherent summary of the text above maintaining the original language.
TEXT
prompt
end
def available_tokens
# Reserve tokens for the response and the base prompt
# ~500 words
reserved_tokens = 700
llm_model.max_prompt_tokens - reserved_tokens
end
end
end
end
end