Sam 61e4c56e1a
FEATURE: Add vision support to AI personas (Claude 3) (#546)
This commit adds the ability to enable vision for AI personas, allowing them to understand images that are posted in the conversation.

For personas with vision enabled, any images the user has posted will be resized to be within the configured max_pixels limit, base64 encoded and included in the prompt sent to the AI provider.

The persona editor allows enabling/disabling vision and has a dropdown to select the max supported image size (low, medium, high). Vision is disabled by default.

This initial vision support has been tested and implemented with Anthropic's claude-3 models which accept images in a special format as part of the prompt.

Other integrations will need to be updated to support images.

Several specs were added to test the new functionality at the persona, prompt building and API layers.

 - Gemini is omitted, pending API support for Gemini 1.5. Current Gemini bot is not performing well, adding images is unlikely to make it perform any better.

 - Open AI is omitted, vision support on GPT-4 it limited in that the API has no tool support when images are enabled so we would need to full back to a different prompting technique, something that would add lots of complexity


---------

Co-authored-by: Martin Brennan <martin@discourse.org>
2024-03-27 14:30:11 +11:00

186 lines
6.4 KiB
Ruby

# frozen_string_literal: true
# A facade that abstracts multiple LLMs behind a single interface.
#
# Internally, it consists of the combination of a dialect and an endpoint.
# After receiving a prompt using our generic format, it translates it to
# the target model and routes the completion request through the correct gateway.
#
# Use the .proxy method to instantiate an object.
# It chooses the correct dialect and endpoint for the model you want to interact with.
#
# Tests of modules that perform LLM calls can use .with_prepared_responses to return canned responses
# instead of relying on WebMock stubs like we did in the past.
#
module DiscourseAi
module Completions
class Llm
UNKNOWN_MODEL = Class.new(StandardError)
class << self
def models_by_provider
# ChatGPT models are listed under open_ai but they are actually available through OpenAI and Azure.
# However, since they use the same URL/key settings, there's no reason to duplicate them.
@models_by_provider ||=
{
aws_bedrock: %w[claude-instant-1 claude-2 claude-3-haiku claude-3-sonnet],
anthropic: %w[claude-instant-1 claude-2 claude-3-haiku claude-3-sonnet claude-3-opus],
vllm: %w[
mistralai/Mixtral-8x7B-Instruct-v0.1
mistralai/Mistral-7B-Instruct-v0.2
StableBeluga2
Upstage-Llama-2-*-instruct-v2
Llama2-*-chat-hf
Llama2-chat-hf
],
hugging_face: %w[
mistralai/Mixtral-8x7B-Instruct-v0.1
mistralai/Mistral-7B-Instruct-v0.2
StableBeluga2
Upstage-Llama-2-*-instruct-v2
Llama2-*-chat-hf
Llama2-chat-hf
],
open_ai: %w[
gpt-3.5-turbo
gpt-4
gpt-3.5-turbo-16k
gpt-4-32k
gpt-4-turbo
gpt-4-vision-preview
],
google: %w[gemini-pro],
}.tap { |h| h[:fake] = ["fake"] if Rails.env.test? || Rails.env.development? }
end
def valid_provider_models
return @valid_provider_models if defined?(@valid_provider_models)
valid_provider_models = []
models_by_provider.each do |provider, models|
valid_provider_models.concat(models.map { |model| "#{provider}:#{model}" })
end
@valid_provider_models = Set.new(valid_provider_models)
end
def with_prepared_responses(responses, llm: nil)
@canned_response = DiscourseAi::Completions::Endpoints::CannedResponse.new(responses)
@canned_llm = llm
@prompts = []
yield(@canned_response, llm, @prompts)
ensure
# Don't leak prepared response if there's an exception.
@canned_response = nil
@canned_llm = nil
@prompts = nil
end
def record_prompt(prompt)
@prompts << prompt if @prompts
end
def proxy(model_name)
provider_and_model_name = model_name.split(":")
provider_name = provider_and_model_name.first
model_name_without_prov = provider_and_model_name[1..].join
dialect_klass =
DiscourseAi::Completions::Dialects::Dialect.dialect_for(model_name_without_prov)
if @canned_response
if @canned_llm && @canned_llm != model_name
raise "Invalid call LLM call, expected #{@canned_llm} but got #{model_name}"
end
return new(dialect_klass, @canned_response, model_name)
end
gateway =
DiscourseAi::Completions::Endpoints::Base.endpoint_for(
provider_name,
model_name_without_prov,
).new(model_name_without_prov, dialect_klass.tokenizer)
new(dialect_klass, gateway, model_name_without_prov)
end
end
def initialize(dialect_klass, gateway, model_name)
@dialect_klass = dialect_klass
@gateway = gateway
@model_name = model_name
end
delegate :tokenizer, to: :dialect_klass
# @param generic_prompt { DiscourseAi::Completions::Prompt } - Our generic prompt object
# @param user { User } - User requesting the summary.
#
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
#
# @returns { String } - Completion result.
#
# When the model invokes a tool, we'll wait until the endpoint finishes replying and feed you a fully-formed tool,
# even if you passed a partial_read_blk block. Invocations are strings that look like this:
#
# <function_calls>
# <invoke>
# <tool_name>get_weather</tool_name>
# <tool_id>get_weather</tool_id>
# <parameters>
# <location>Sydney</location>
# <unit>c</unit>
# </parameters>
# </invoke>
# </function_calls>
#
def generate(
prompt,
temperature: nil,
top_p: nil,
max_tokens: nil,
stop_sequences: nil,
user:,
&partial_read_blk
)
self.class.record_prompt(prompt)
model_params = { max_tokens: max_tokens, stop_sequences: stop_sequences }
model_params[:temperature] = temperature if temperature
model_params[:top_p] = top_p if top_p
if prompt.is_a?(String)
prompt =
DiscourseAi::Completions::Prompt.new(
"You are a helpful bot",
messages: [{ type: :user, content: prompt }],
)
elsif prompt.is_a?(Array)
prompt = DiscourseAi::Completions::Prompt.new(messages: prompt)
end
if !prompt.is_a?(DiscourseAi::Completions::Prompt)
raise ArgumentError, "Prompt must be either a string, array, of Prompt object"
end
model_params.keys.each { |key| model_params.delete(key) if model_params[key].nil? }
dialect = dialect_klass.new(prompt, model_name, opts: model_params)
gateway.perform_completion!(dialect, user, model_params, &partial_read_blk)
end
def max_prompt_tokens
dialect_klass.new(DiscourseAi::Completions::Prompt.new(""), model_name).max_prompt_tokens
end
attr_reader :model_name
private
attr_reader :dialect_klass, :gateway
end
end
end