discourse-ai/spec/lib/modules/embeddings/strategies/truncation_spec.rb

36 lines
1.1 KiB
Ruby

# frozen_string_literal: true
RSpec.describe DiscourseAi::Embeddings::Strategies::Truncation do
subject(:truncation) { described_class.new }
describe "#prepare_text_from" do
context "when using vector from OpenAI" do
before { SiteSetting.max_post_length = 100_000 }
fab!(:topic) { Fabricate(:topic) }
fab!(:post) do
Fabricate(:post, topic: topic, raw: "Baby, bird, bird, bird\nBird is the word\n" * 500)
end
fab!(:post) do
Fabricate(
:post,
topic: topic,
raw: "Don't you know about the bird?\nEverybody knows that the bird is a word\n" * 400,
)
end
fab!(:post) { Fabricate(:post, topic: topic, raw: "Surfin' bird\n" * 800) }
let(:model) do
DiscourseAi::Embeddings::VectorRepresentations::TextEmbeddingAda002.new(truncation)
end
it "truncates a topic" do
prepared_text =
truncation.prepare_text_from(topic, model.tokenizer, model.max_sequence_length)
expect(model.tokenizer.size(prepared_text)).to be <= model.max_sequence_length
end
end
end
end