discourse-ai/spec/shared/tokenizer_spec.rb
Roman Rizzi ec97996905
FIX/REFACTOR: FoldContent revamp (#866)
* FIX/REFACTOR: FoldContent revamp

We hit a snag with our hot topic gist strategy: the regex we used to split the content didn't work, so we cannot send the original post separately. This was important for letting the model focus on what's new in the topic.

The algorithm doesn’t give us full control over how prompts are written, and figuring out how to format the content isn't straightforward. This means we're having to use more complicated workarounds, like regex.

To tackle this, I'm suggesting we simplify the approach a bit. Let's focus on summarizing as much as we can upfront, then gradually add new content until there's nothing left to summarize.

Also, the "extend" part is mostly for models with small context windows, which shouldn't pose a problem 99% of the time with the content volume we're dealing with.

* Fix fold docs

* Use #shift instead of #pop to get the first elem, not the last
2024-10-25 11:51:17 -03:00

231 lines
7.6 KiB
Ruby

# frozen_string_literal: true
require "rails_helper"
describe DiscourseAi::Tokenizer::BertTokenizer do
describe "#size" do
describe "returns a token count" do
it "for a single word" do
expect(described_class.size("hello")).to eq(3)
end
it "for a sentence" do
expect(described_class.size("hello world")).to eq(4)
end
it "for a sentence with punctuation" do
expect(described_class.size("hello, world!")).to eq(6)
end
it "for a sentence with punctuation and capitalization" do
expect(described_class.size("Hello, World!")).to eq(6)
end
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(7)
end
end
end
describe "#tokenizer" do
it "returns a tokenizer" do
expect(described_class.tokenizer).to be_a(Tokenizers::Tokenizer)
end
it "returns the same tokenizer" do
expect(described_class.tokenizer).to eq(described_class.tokenizer)
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo bar")
end
end
end
describe DiscourseAi::Tokenizer::AnthropicTokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(5)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo bar baz")
end
end
end
describe DiscourseAi::Tokenizer::OpenAiTokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(6)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo bar baz")
end
it "truncates a sentence successfully at a multibyte unicode character" do
sentence = "foo bar 👨🏿‍👩🏿‍👧🏿‍👧🏿 baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 7)).to eq("foo bar 👨🏿")
end
it "truncates unicode characters properly when they use more than one token per char" do
sentence = "我喜欢吃比萨"
original_size = described_class.size(sentence)
expect(described_class.size(described_class.truncate(sentence, original_size - 1))).to be <
original_size
end
end
describe "#below_limit?" do
it "returns true when the tokens can be expanded" do
expect(described_class.below_limit?("foo bar baz qux", 6)).to eq(true)
end
it "returns false when the tokens cannot be expanded" do
expect(described_class.below_limit?("foo bar baz qux", 3)).to eq(false)
end
it "returns false when the tokens cannot be expanded due to multibyte unicode characters" do
expect(described_class.below_limit?("foo bar 👨🏿 baz qux", 6)).to eq(false)
end
it "handles unicode characters properly when they use more than one token per char" do
expect(described_class.below_limit?("我喜欢吃比萨萨", 10)).to eq(false)
end
end
end
describe DiscourseAi::Tokenizer::OpenAiGpt4oTokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(6)
end
end
end
end
describe DiscourseAi::Tokenizer::AllMpnetBaseV2Tokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(7)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo bar")
end
end
end
describe DiscourseAi::Tokenizer::MultilingualE5LargeTokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(7)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo")
end
end
end
describe DiscourseAi::Tokenizer::BgeLargeEnTokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(7)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo bar")
end
end
end
describe DiscourseAi::Tokenizer::BgeM3Tokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(7)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo")
end
it "truncates a sentence successfully at a multibyte unicode character" do
sentence = "foo bar 👨🏿‍👩🏿‍👧🏿‍👧🏿 baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 7)).to eq("foo bar 👨🏿")
end
it "truncates unicode characters properly when they use more than one token per char" do
sentence = "我喜欢吃比萨"
original_size = described_class.size(sentence)
expect(described_class.size(described_class.truncate(sentence, original_size - 2))).to be <
original_size
end
end
end
describe DiscourseAi::Tokenizer::Llama3Tokenizer do
describe "#size" do
describe "returns a token count" do
it "for a sentence with punctuation and capitalization and numbers" do
expect(described_class.size("Hello, World! 123")).to eq(7)
end
end
end
describe "#truncate" do
it "truncates a sentence" do
sentence = "foo bar baz qux quux corge grault garply waldo fred plugh xyzzy thud"
expect(described_class.truncate(sentence, 3)).to eq("foo bar")
end
# Llama3 fails here
# it "truncates a sentence successfully at a multibyte unicode character" do
# sentence = "foo bar 👨🏿‍👩🏿‍👧🏿‍👧🏿 baz qux quux corge grault garply waldo fred plugh xyzzy thud"
# expect(described_class.truncate(sentence, 8)).to eq("foo bar 👨🏿")
# end
it "truncates unicode characters properly when they use more than one token per char" do
sentence = "我喜欢吃比萨"
original_size = described_class.size(sentence)
expect(described_class.size(described_class.truncate(sentence, original_size - 2))).to be <
original_size
end
end
end