discourse-ai/lib/modules/embeddings/model.rb

84 lines
2.5 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module Embeddings
class Model
AVAILABLE_MODELS_TEMPLATES = {
"all-mpnet-base-v2" => [768, 384, %i[dot cosine euclidean], %i[symmetric], "discourse"],
"all-distilroberta-v1" => [768, 512, %i[dot cosine euclidean], %i[symmetric], "discourse"],
"multi-qa-mpnet-base-dot-v1" => [768, 512, %i[dot], %i[symmetric], "discourse"],
"paraphrase-multilingual-mpnet-base-v2" => [
768,
128,
%i[cosine],
%i[symmetric],
"discourse",
],
"msmarco-distilbert-base-v4" => [768, 512, %i[cosine], %i[asymmetric], "discourse"],
"msmarco-distilbert-base-tas-b" => [768, 512, %i[dot], %i[asymmetric], "discourse"],
"text-embedding-ada-002" => [1536, 2048, %i[cosine], %i[symmetric asymmetric], "openai"],
}
SEARCH_FUNCTION_TO_PG_INDEX = {
dot: "vector_ip_ops",
cosine: "vector_cosine_ops",
euclidean: "vector_l2_ops",
}
SEARCH_FUNCTION_TO_PG_FUNCTION = { dot: "<#>", cosine: "<=>", euclidean: "<->" }
class << self
def instantiate(model_name)
new(model_name, *AVAILABLE_MODELS_TEMPLATES[model_name])
end
def enabled_models
SiteSetting
.ai_embeddings_models
.split("|")
.map { |model_name| instantiate(model_name.strip) }
end
end
def initialize(name, dimensions, max_sequence_lenght, functions, type, provider)
@name = name
@dimensions = dimensions
@max_sequence_lenght = max_sequence_lenght
@functions = functions
@type = type
@provider = provider
end
def generate_embedding(input)
send("#{provider}_embeddings", input)
end
def pg_function
SEARCH_FUNCTION_TO_PG_FUNCTION[functions.first]
end
def pg_index
SEARCH_FUNCTION_TO_PG_INDEX[functions.first]
end
attr_reader :name, :dimensions, :max_sequence_lenght, :functions, :type, :provider
private
def discourse_embeddings(input)
DiscourseAi::Inference::DiscourseClassifier.perform!(
"#{SiteSetting.ai_embeddings_discourse_service_api_endpoint}/api/v1/classify",
name.to_s,
input,
SiteSetting.ai_embeddings_discourse_service_api_key,
)
end
def openai_embeddings(input)
response = DiscourseAi::Inference::OpenAiEmbeddings.perform!(input)
response[:data].first[:embedding]
end
end
end
end