discourse-ai/lib/embeddings/vector_representations/bge_m3.rb

61 lines
1.2 KiB
Ruby

# frozen_string_literal: true
module DiscourseAi
module Embeddings
module VectorRepresentations
class BgeM3 < Base
class << self
def name
"bge-m3"
end
def correctly_configured?
DiscourseAi::Inference::HuggingFaceTextEmbeddings.configured?
end
def dependant_setting_names
%w[ai_hugging_face_tei_endpoint_srv ai_hugging_face_tei_endpoint]
end
end
def vector_from(text, asymetric: false)
truncated_text = tokenizer.truncate(text, max_sequence_length - 2)
inference_client.perform!(truncated_text)
end
def dimensions
1024
end
def max_sequence_length
8192
end
def id
8
end
def version
1
end
def pg_function
"<#>"
end
def pg_index_type
"halfvec_ip_ops"
end
def tokenizer
DiscourseAi::Tokenizer::BgeM3Tokenizer
end
def inference_client
DiscourseAi::Inference::HuggingFaceTextEmbeddings.instance
end
end
end
end
end