39 lines
1.3 KiB
Ruby
39 lines
1.3 KiB
Ruby
# frozen_string_literal: true
|
|
|
|
RSpec.describe Jobs::GenerateRagEmbeddings do
|
|
describe "#execute" do
|
|
let(:truncation) { DiscourseAi::Embeddings::Strategies::Truncation.new }
|
|
let(:vector_rep) do
|
|
DiscourseAi::Embeddings::VectorRepresentations::Base.current_representation(truncation)
|
|
end
|
|
|
|
let(:expected_embedding) { [0.0038493] * vector_rep.dimensions }
|
|
|
|
fab!(:ai_persona)
|
|
|
|
fab!(:rag_document_fragment_1) { Fabricate(:rag_document_fragment, ai_persona: ai_persona) }
|
|
fab!(:rag_document_fragment_2) { Fabricate(:rag_document_fragment, ai_persona: ai_persona) }
|
|
|
|
before do
|
|
SiteSetting.ai_embeddings_enabled = true
|
|
SiteSetting.ai_embeddings_discourse_service_api_endpoint = "http://test.com"
|
|
|
|
WebMock.stub_request(
|
|
:post,
|
|
"#{SiteSetting.ai_embeddings_discourse_service_api_endpoint}/api/v1/classify",
|
|
).to_return(status: 200, body: JSON.dump(expected_embedding))
|
|
end
|
|
|
|
it "generates a new vector for each fragment" do
|
|
expected_embeddings = 2
|
|
|
|
subject.execute(fragment_ids: [rag_document_fragment_1.id, rag_document_fragment_2.id])
|
|
|
|
embeddings_count =
|
|
DB.query_single("SELECT COUNT(*) from #{vector_rep.rag_fragments_table_name}").first
|
|
|
|
expect(embeddings_count).to eq(expected_embeddings)
|
|
end
|
|
end
|
|
end
|