discourse/lib/file_store/s3_store.rb

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

448 lines
14 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
2016-06-30 10:55:01 -04:00
require "uri"
require "mini_mime"
require "file_store/base_store"
require "s3_helper"
require "file_helper"
2013-11-05 13:04:47 -05:00
module FileStore
class S3Store < BaseStore
TOMBSTONE_PREFIX ||= "tombstone/"
FEATURE: Direct S3 multipart uploads for backups (#14736) This PR introduces a new `enable_experimental_backup_uploads` site setting (default false and hidden), which when enabled alongside `enable_direct_s3_uploads` will allow for direct S3 multipart uploads of backup .tar.gz files. To make multipart external uploads work with both the S3BackupStore and the S3Store, I've had to move several methods out of S3Store and into S3Helper, including: * presigned_url * create_multipart * abort_multipart * complete_multipart * presign_multipart_part * list_multipart_parts Then, S3Store and S3BackupStore either delegate directly to S3Helper or have their own special methods to call S3Helper for these methods. FileStore.temporary_upload_path has also removed its dependence on upload_path, and can now be used interchangeably between the stores. A similar change was made in the frontend as well, moving the multipart related JS code out of ComposerUppyUpload and into a mixin of its own, so it can also be used by UppyUploadMixin. Some changes to ExternalUploadManager had to be made here as well. The backup direct uploads do not need an Upload record made for them in the database, so they can be moved to their final S3 resting place when completing the multipart upload. This changeset is not perfect; it introduces some special cases in UploadController to handle backups that was previously in BackupController, because UploadController is where the multipart routes are located. A subsequent pull request will pull these routes into a module or some other sharing pattern, along with hooks, so the backup controller and the upload controller (and any future controllers that may need them) can include these routes in a nicer way.
2021-11-10 17:25:31 -05:00
delegate :abort_multipart,
:presign_multipart_part,
:list_multipart_parts,
:complete_multipart,
to: :s3_helper
def initialize(s3_helper = nil)
@s3_helper = s3_helper
end
def s3_helper
@s3_helper ||=
S3Helper.new(
s3_bucket,
Rails.configuration.multisite ? multisite_tombstone_prefix : TOMBSTONE_PREFIX,
use_accelerate_endpoint: SiteSetting.enable_s3_transfer_acceleration,
)
end
2015-05-29 12:39:47 -04:00
def store_upload(file, upload, content_type = nil)
upload.url = nil
path = get_path_for_upload(upload)
FEATURE: Secure media allowing duplicated uploads with category-level privacy and post-based access rules (#8664) ### General Changes and Duplication * We now consider a post `with_secure_media?` if it is in a read-restricted category. * When uploading we now set an upload's secure status straight away. * When uploading if `SiteSetting.secure_media` is enabled, we do not check to see if the upload already exists using the `sha1` digest of the upload. The `sha1` column of the upload is filled with a `SecureRandom.hex(20)` value which is the same length as `Upload::SHA1_LENGTH`. The `original_sha1` column is filled with the _real_ sha1 digest of the file. * Whether an upload `should_be_secure?` is now determined by whether the `access_control_post` is `with_secure_media?` (if there is no access control post then we leave the secure status as is). * When serializing the upload, we now cook the URL if the upload is secure. This is so it shows up correctly in the composer preview, because we set secure status on upload. ### Viewing Secure Media * The secure-media-upload URL will take the post that the upload is attached to into account via `Guardian.can_see?` for access permissions * If there is no `access_control_post` then we just deliver the media. This should be a rare occurrance and shouldn't cause issues as the `access_control_post` is set when `link_post_uploads` is called via `CookedPostProcessor` ### Removed We no longer do any of these because we do not reuse uploads by sha1 if secure media is enabled. * We no longer have a way to prevent cross-posting of a secure upload from a private context to a public context. * We no longer have to set `secure: false` for uploads when uploading for a theme component.
2020-01-15 22:50:27 -05:00
url, upload.etag =
store_file(
file,
path,
filename: upload.original_filename,
content_type: content_type,
cache_locally: true,
private_acl: upload.secure?,
)
url
2013-11-05 13:04:47 -05:00
end
FEATURE: Direct S3 multipart uploads for backups (#14736) This PR introduces a new `enable_experimental_backup_uploads` site setting (default false and hidden), which when enabled alongside `enable_direct_s3_uploads` will allow for direct S3 multipart uploads of backup .tar.gz files. To make multipart external uploads work with both the S3BackupStore and the S3Store, I've had to move several methods out of S3Store and into S3Helper, including: * presigned_url * create_multipart * abort_multipart * complete_multipart * presign_multipart_part * list_multipart_parts Then, S3Store and S3BackupStore either delegate directly to S3Helper or have their own special methods to call S3Helper for these methods. FileStore.temporary_upload_path has also removed its dependence on upload_path, and can now be used interchangeably between the stores. A similar change was made in the frontend as well, moving the multipart related JS code out of ComposerUppyUpload and into a mixin of its own, so it can also be used by UppyUploadMixin. Some changes to ExternalUploadManager had to be made here as well. The backup direct uploads do not need an Upload record made for them in the database, so they can be moved to their final S3 resting place when completing the multipart upload. This changeset is not perfect; it introduces some special cases in UploadController to handle backups that was previously in BackupController, because UploadController is where the multipart routes are located. A subsequent pull request will pull these routes into a module or some other sharing pattern, along with hooks, so the backup controller and the upload controller (and any future controllers that may need them) can include these routes in a nicer way.
2021-11-10 17:25:31 -05:00
def move_existing_stored_upload(existing_external_upload_key:, upload: nil, content_type: nil)
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
upload.url = nil
path = get_path_for_upload(upload)
url, upload.etag =
store_file(
nil,
path,
filename: upload.original_filename,
content_type: content_type,
cache_locally: false,
private_acl: upload.secure?,
move_existing: true,
existing_external_upload_key: existing_external_upload_key,
)
url
end
def store_optimized_image(file, optimized_image, content_type = nil, secure: false)
optimized_image.url = nil
path = get_path_for_optimized_image(optimized_image)
url, optimized_image.etag =
store_file(file, path, content_type: content_type, private_acl: secure)
url
end
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
# File is an actual Tempfile on disk
#
# An existing_external_upload_key is given for cases where move_existing is specified.
# This is an object already uploaded directly to S3 that we are now moving
# to its final resting place with the correct sha and key.
#
2015-05-29 12:39:47 -04:00
# options
# - filename
# - content_type
# - cache_locally
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
# - move_existing
# - existing_external_upload_key
2015-05-29 12:39:47 -04:00
def store_file(file, path, opts = {})
path = path.dup
filename = opts[:filename].presence || File.basename(path)
2015-05-29 12:39:47 -04:00
# cache file locally when needed
cache_file(file, File.basename(path)) if opts[:cache_locally]
options = {
acl: SiteSetting.s3_use_acls ? (opts[:private_acl] ? "private" : "public-read") : nil,
cache_control: "max-age=31556952, public, immutable",
content_type:
opts[:content_type].presence || MiniMime.lookup_by_filename(filename)&.content_type,
}
# add a "content disposition: attachment" header with the original
# filename for everything but safe images (not SVG). audio and video will
# still stream correctly in HTML players, and when a direct link is
# provided to any file but an image it will download correctly in the
# browser.
if !FileHelper.is_inline_image?(filename)
options[:content_disposition] = ActionDispatch::Http::ContentDisposition.format(
disposition: "attachment",
filename: filename,
)
end
path.prepend(File.join(upload_path, "/")) if Rails.configuration.multisite
# if this fails, it will throw an exception
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
if opts[:move_existing] && opts[:existing_external_upload_key]
FEATURE: Uppy direct S3 multipart uploads in composer (#14051) This pull request introduces the endpoints required, and the JavaScript functionality in the `ComposerUppyUpload` mixin, for direct S3 multipart uploads. There are four new endpoints in the uploads controller: * `create-multipart.json` - Creates the multipart upload in S3 along with an `ExternalUploadStub` record, storing information about the file in the same way as `generate-presigned-put.json` does for regular direct S3 uploads * `batch-presign-multipart-parts.json` - Takes a list of part numbers and the unique identifier for an `ExternalUploadStub` record, and generates the presigned URLs for those parts if the multipart upload still exists and if the user has permission to access that upload * `complete-multipart.json` - Completes the multipart upload in S3. Needs the full list of part numbers and their associated ETags which are returned when the part is uploaded to the presigned URL above. Only works if the user has permission to access the associated `ExternalUploadStub` record and the multipart upload still exists. After we confirm the upload is complete in S3, we go through the regular `UploadCreator` flow, the same as `complete-external-upload.json`, and promote the temporary upload S3 into a full `Upload` record, moving it to its final destination. * `abort-multipart.json` - Aborts the multipart upload on S3 and destroys the `ExternalUploadStub` record if the user has permission to access that upload. Also added are a few new columns to `ExternalUploadStub`: * multipart - Whether or not this is a multipart upload * external_upload_identifier - The "upload ID" for an S3 multipart upload * filesize - The size of the file when the `create-multipart.json` or `generate-presigned-put.json` is called. This is used for validation. When the user completes a direct S3 upload, either regular or multipart, we take the `filesize` that was captured when the `ExternalUploadStub` was first created and compare it with the final `Content-Length` size of the file where it is stored in S3. Then, if the two do not match, we throw an error, delete the file on S3, and ban the user from uploading files for N (default 5) minutes. This would only happen if the user uploads a different file than what they first specified, or in the case of multipart uploads uploaded larger chunks than needed. This is done to prevent abuse of S3 storage by bad actors. Also included in this PR is an update to vendor/uppy.js. This has been built locally from the latest uppy source at https://github.com/transloadit/uppy/commit/d613b849a6591083f8a0968aa8d66537e231bbcd. This must be done so that I can get my multipart upload changes into Discourse. When the Uppy team cuts a proper release, we can bump the package.json versions instead.
2021-08-24 18:46:54 -04:00
original_path = opts[:existing_external_upload_key]
options[:apply_metadata_to_destination] = true
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
path, etag = s3_helper.copy(original_path, path, options: options)
FEATURE: Uppy direct S3 multipart uploads in composer (#14051) This pull request introduces the endpoints required, and the JavaScript functionality in the `ComposerUppyUpload` mixin, for direct S3 multipart uploads. There are four new endpoints in the uploads controller: * `create-multipart.json` - Creates the multipart upload in S3 along with an `ExternalUploadStub` record, storing information about the file in the same way as `generate-presigned-put.json` does for regular direct S3 uploads * `batch-presign-multipart-parts.json` - Takes a list of part numbers and the unique identifier for an `ExternalUploadStub` record, and generates the presigned URLs for those parts if the multipart upload still exists and if the user has permission to access that upload * `complete-multipart.json` - Completes the multipart upload in S3. Needs the full list of part numbers and their associated ETags which are returned when the part is uploaded to the presigned URL above. Only works if the user has permission to access the associated `ExternalUploadStub` record and the multipart upload still exists. After we confirm the upload is complete in S3, we go through the regular `UploadCreator` flow, the same as `complete-external-upload.json`, and promote the temporary upload S3 into a full `Upload` record, moving it to its final destination. * `abort-multipart.json` - Aborts the multipart upload on S3 and destroys the `ExternalUploadStub` record if the user has permission to access that upload. Also added are a few new columns to `ExternalUploadStub`: * multipart - Whether or not this is a multipart upload * external_upload_identifier - The "upload ID" for an S3 multipart upload * filesize - The size of the file when the `create-multipart.json` or `generate-presigned-put.json` is called. This is used for validation. When the user completes a direct S3 upload, either regular or multipart, we take the `filesize` that was captured when the `ExternalUploadStub` was first created and compare it with the final `Content-Length` size of the file where it is stored in S3. Then, if the two do not match, we throw an error, delete the file on S3, and ban the user from uploading files for N (default 5) minutes. This would only happen if the user uploads a different file than what they first specified, or in the case of multipart uploads uploaded larger chunks than needed. This is done to prevent abuse of S3 storage by bad actors. Also included in this PR is an update to vendor/uppy.js. This has been built locally from the latest uppy source at https://github.com/transloadit/uppy/commit/d613b849a6591083f8a0968aa8d66537e231bbcd. This must be done so that I can get my multipart upload changes into Discourse. When the Uppy team cuts a proper release, we can bump the package.json versions instead.
2021-08-24 18:46:54 -04:00
delete_file(original_path)
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
else
path, etag = s3_helper.upload(file, path, options)
end
# return the upload url and etag
[File.join(absolute_base_url, path), etag]
2013-11-05 13:04:47 -05:00
end
FEATURE: Uppy direct S3 multipart uploads in composer (#14051) This pull request introduces the endpoints required, and the JavaScript functionality in the `ComposerUppyUpload` mixin, for direct S3 multipart uploads. There are four new endpoints in the uploads controller: * `create-multipart.json` - Creates the multipart upload in S3 along with an `ExternalUploadStub` record, storing information about the file in the same way as `generate-presigned-put.json` does for regular direct S3 uploads * `batch-presign-multipart-parts.json` - Takes a list of part numbers and the unique identifier for an `ExternalUploadStub` record, and generates the presigned URLs for those parts if the multipart upload still exists and if the user has permission to access that upload * `complete-multipart.json` - Completes the multipart upload in S3. Needs the full list of part numbers and their associated ETags which are returned when the part is uploaded to the presigned URL above. Only works if the user has permission to access the associated `ExternalUploadStub` record and the multipart upload still exists. After we confirm the upload is complete in S3, we go through the regular `UploadCreator` flow, the same as `complete-external-upload.json`, and promote the temporary upload S3 into a full `Upload` record, moving it to its final destination. * `abort-multipart.json` - Aborts the multipart upload on S3 and destroys the `ExternalUploadStub` record if the user has permission to access that upload. Also added are a few new columns to `ExternalUploadStub`: * multipart - Whether or not this is a multipart upload * external_upload_identifier - The "upload ID" for an S3 multipart upload * filesize - The size of the file when the `create-multipart.json` or `generate-presigned-put.json` is called. This is used for validation. When the user completes a direct S3 upload, either regular or multipart, we take the `filesize` that was captured when the `ExternalUploadStub` was first created and compare it with the final `Content-Length` size of the file where it is stored in S3. Then, if the two do not match, we throw an error, delete the file on S3, and ban the user from uploading files for N (default 5) minutes. This would only happen if the user uploads a different file than what they first specified, or in the case of multipart uploads uploaded larger chunks than needed. This is done to prevent abuse of S3 storage by bad actors. Also included in this PR is an update to vendor/uppy.js. This has been built locally from the latest uppy source at https://github.com/transloadit/uppy/commit/d613b849a6591083f8a0968aa8d66537e231bbcd. This must be done so that I can get my multipart upload changes into Discourse. When the Uppy team cuts a proper release, we can bump the package.json versions instead.
2021-08-24 18:46:54 -04:00
def delete_file(path)
# delete the object outright without moving to tombstone,
# not recommended for most use cases
s3_helper.delete_object(path)
end
def remove_file(url, path)
2015-05-29 12:39:47 -04:00
return unless has_been_uploaded?(url)
# copy the removed file to tombstone
s3_helper.remove(path, true)
2013-11-05 13:04:47 -05:00
end
2013-08-13 16:08:29 -04:00
2018-08-07 23:26:05 -04:00
def copy_file(url, source, destination)
return unless has_been_uploaded?(url)
s3_helper.copy(source, destination)
2018-08-07 23:26:05 -04:00
end
2013-11-05 13:04:47 -05:00
def has_been_uploaded?(url)
return false if url.blank?
2016-06-30 10:55:01 -04:00
begin
2020-06-17 03:47:05 -04:00
parsed_url = URI.parse(UrlHelper.encode(url))
rescue StandardError
# There are many exceptions possible here including Addressable::URI:: exceptions
# and URI:: exceptions, catch all may seem wide, but it makes no sense to raise ever
# on an invalid url here
return false
end
2016-06-30 10:55:01 -04:00
base_hostname = URI.parse(absolute_base_url).hostname
if url[base_hostname]
# if the hostnames match it means the upload is in the same
# bucket on s3. however, the bucket folder path may differ in
# some cases, and we do not want to assume the url is uploaded
# here. e.g. the path of the current site could be /prod and the
# other site could be /staging
if s3_bucket_folder_path.present?
return parsed_url.path.starts_with?("/#{s3_bucket_folder_path}")
else
return true
end
return false
end
2016-06-30 10:55:01 -04:00
return false if SiteSetting.Upload.s3_cdn_url.blank?
s3_cdn_url = URI.parse(SiteSetting.Upload.s3_cdn_url || "")
cdn_hostname = s3_cdn_url.hostname
if cdn_hostname.presence && url[cdn_hostname] &&
(s3_cdn_url.path.blank? || parsed_url.path.starts_with?(s3_cdn_url.path))
return true
end
false
end
def s3_bucket_folder_path
S3Helper.get_bucket_and_folder_path(s3_bucket)[1]
2013-11-05 13:04:47 -05:00
end
2013-08-13 16:08:29 -04:00
def s3_bucket_name
S3Helper.get_bucket_and_folder_path(s3_bucket)[0]
end
2013-11-05 13:04:47 -05:00
def absolute_base_url
@absolute_base_url ||= SiteSetting.Upload.absolute_base_url
2013-11-05 13:04:47 -05:00
end
2013-08-13 16:08:29 -04:00
def s3_upload_host
if SiteSetting.Upload.s3_cdn_url.present?
SiteSetting.Upload.s3_cdn_url
else
"https:#{absolute_base_url}"
end
end
2013-11-05 13:04:47 -05:00
def external?
true
end
2013-08-13 16:08:29 -04:00
2013-11-27 16:01:41 -05:00
def purge_tombstone(grace_period)
s3_helper.update_tombstone_lifecycle(grace_period)
2013-11-27 16:01:41 -05:00
end
def multisite_tombstone_prefix
File.join("uploads", "tombstone", RailsMultisite::ConnectionManagement.current_db, "/")
end
def download_url(upload)
return unless upload
"#{upload.short_path}?dl=1"
end
def path_for(upload)
url = upload&.url
FileStore::LocalStore.new.path_for(upload) if url && url[%r{\A/[^/]}]
end
def url_for(upload, force_download: false)
if upload.secure? || force_download
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
presigned_get_url(
get_upload_key(upload),
force_download: force_download,
filename: upload.original_filename,
)
elsif SiteSetting.s3_use_cdn_url_for_all_uploads
cdn_url(upload.url)
else
upload.url
end
end
def cdn_url(url)
return url if SiteSetting.Upload.s3_cdn_url.blank?
schema = url[%r{\A(https?:)?//}, 1]
folder = s3_bucket_folder_path.nil? ? "" : "#{s3_bucket_folder_path}/"
url.sub(
File.join("#{schema}#{absolute_base_url}", folder),
File.join(SiteSetting.Upload.s3_cdn_url, "/"),
)
end
def signed_url_for_path(
path,
expires_in: SiteSetting.s3_presigned_get_url_expires_after_seconds,
force_download: false
)
key = path.sub(absolute_base_url + "/", "")
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
presigned_get_url(key, expires_in: expires_in, force_download: force_download)
end
def signed_request_for_temporary_upload(
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
file_name,
expires_in: S3Helper::UPLOAD_URL_EXPIRES_AFTER_SECONDS,
metadata: {}
)
key = temporary_upload_path(file_name)
s3_helper.presigned_request(
FEATURE: Uppy direct S3 multipart uploads in composer (#14051) This pull request introduces the endpoints required, and the JavaScript functionality in the `ComposerUppyUpload` mixin, for direct S3 multipart uploads. There are four new endpoints in the uploads controller: * `create-multipart.json` - Creates the multipart upload in S3 along with an `ExternalUploadStub` record, storing information about the file in the same way as `generate-presigned-put.json` does for regular direct S3 uploads * `batch-presign-multipart-parts.json` - Takes a list of part numbers and the unique identifier for an `ExternalUploadStub` record, and generates the presigned URLs for those parts if the multipart upload still exists and if the user has permission to access that upload * `complete-multipart.json` - Completes the multipart upload in S3. Needs the full list of part numbers and their associated ETags which are returned when the part is uploaded to the presigned URL above. Only works if the user has permission to access the associated `ExternalUploadStub` record and the multipart upload still exists. After we confirm the upload is complete in S3, we go through the regular `UploadCreator` flow, the same as `complete-external-upload.json`, and promote the temporary upload S3 into a full `Upload` record, moving it to its final destination. * `abort-multipart.json` - Aborts the multipart upload on S3 and destroys the `ExternalUploadStub` record if the user has permission to access that upload. Also added are a few new columns to `ExternalUploadStub`: * multipart - Whether or not this is a multipart upload * external_upload_identifier - The "upload ID" for an S3 multipart upload * filesize - The size of the file when the `create-multipart.json` or `generate-presigned-put.json` is called. This is used for validation. When the user completes a direct S3 upload, either regular or multipart, we take the `filesize` that was captured when the `ExternalUploadStub` was first created and compare it with the final `Content-Length` size of the file where it is stored in S3. Then, if the two do not match, we throw an error, delete the file on S3, and ban the user from uploading files for N (default 5) minutes. This would only happen if the user uploads a different file than what they first specified, or in the case of multipart uploads uploaded larger chunks than needed. This is done to prevent abuse of S3 storage by bad actors. Also included in this PR is an update to vendor/uppy.js. This has been built locally from the latest uppy source at https://github.com/transloadit/uppy/commit/d613b849a6591083f8a0968aa8d66537e231bbcd. This must be done so that I can get my multipart upload changes into Discourse. When the Uppy team cuts a proper release, we can bump the package.json versions instead.
2021-08-24 18:46:54 -04:00
key,
method: :put_object,
expires_in: expires_in,
opts: {
metadata: metadata,
acl: SiteSetting.s3_use_acls ? "private" : nil,
FEATURE: Uppy direct S3 multipart uploads in composer (#14051) This pull request introduces the endpoints required, and the JavaScript functionality in the `ComposerUppyUpload` mixin, for direct S3 multipart uploads. There are four new endpoints in the uploads controller: * `create-multipart.json` - Creates the multipart upload in S3 along with an `ExternalUploadStub` record, storing information about the file in the same way as `generate-presigned-put.json` does for regular direct S3 uploads * `batch-presign-multipart-parts.json` - Takes a list of part numbers and the unique identifier for an `ExternalUploadStub` record, and generates the presigned URLs for those parts if the multipart upload still exists and if the user has permission to access that upload * `complete-multipart.json` - Completes the multipart upload in S3. Needs the full list of part numbers and their associated ETags which are returned when the part is uploaded to the presigned URL above. Only works if the user has permission to access the associated `ExternalUploadStub` record and the multipart upload still exists. After we confirm the upload is complete in S3, we go through the regular `UploadCreator` flow, the same as `complete-external-upload.json`, and promote the temporary upload S3 into a full `Upload` record, moving it to its final destination. * `abort-multipart.json` - Aborts the multipart upload on S3 and destroys the `ExternalUploadStub` record if the user has permission to access that upload. Also added are a few new columns to `ExternalUploadStub`: * multipart - Whether or not this is a multipart upload * external_upload_identifier - The "upload ID" for an S3 multipart upload * filesize - The size of the file when the `create-multipart.json` or `generate-presigned-put.json` is called. This is used for validation. When the user completes a direct S3 upload, either regular or multipart, we take the `filesize` that was captured when the `ExternalUploadStub` was first created and compare it with the final `Content-Length` size of the file where it is stored in S3. Then, if the two do not match, we throw an error, delete the file on S3, and ban the user from uploading files for N (default 5) minutes. This would only happen if the user uploads a different file than what they first specified, or in the case of multipart uploads uploaded larger chunks than needed. This is done to prevent abuse of S3 storage by bad actors. Also included in this PR is an update to vendor/uppy.js. This has been built locally from the latest uppy source at https://github.com/transloadit/uppy/commit/d613b849a6591083f8a0968aa8d66537e231bbcd. This must be done so that I can get my multipart upload changes into Discourse. When the Uppy team cuts a proper release, we can bump the package.json versions instead.
2021-08-24 18:46:54 -04:00
},
)
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
end
def temporary_upload_path(file_name)
FEATURE: Direct S3 multipart uploads for backups (#14736) This PR introduces a new `enable_experimental_backup_uploads` site setting (default false and hidden), which when enabled alongside `enable_direct_s3_uploads` will allow for direct S3 multipart uploads of backup .tar.gz files. To make multipart external uploads work with both the S3BackupStore and the S3Store, I've had to move several methods out of S3Store and into S3Helper, including: * presigned_url * create_multipart * abort_multipart * complete_multipart * presign_multipart_part * list_multipart_parts Then, S3Store and S3BackupStore either delegate directly to S3Helper or have their own special methods to call S3Helper for these methods. FileStore.temporary_upload_path has also removed its dependence on upload_path, and can now be used interchangeably between the stores. A similar change was made in the frontend as well, moving the multipart related JS code out of ComposerUppyUpload and into a mixin of its own, so it can also be used by UppyUploadMixin. Some changes to ExternalUploadManager had to be made here as well. The backup direct uploads do not need an Upload record made for them in the database, so they can be moved to their final S3 resting place when completing the multipart upload. This changeset is not perfect; it introduces some special cases in UploadController to handle backups that was previously in BackupController, because UploadController is where the multipart routes are located. A subsequent pull request will pull these routes into a module or some other sharing pattern, along with hooks, so the backup controller and the upload controller (and any future controllers that may need them) can include these routes in a nicer way.
2021-11-10 17:25:31 -05:00
folder_prefix =
s3_bucket_folder_path.nil? ? upload_path : File.join(s3_bucket_folder_path, upload_path)
FileStore::BaseStore.temporary_upload_path(file_name, folder_prefix: folder_prefix)
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
end
def object_from_path(path)
s3_helper.object(path)
end
2015-05-29 12:39:47 -04:00
def cache_avatar(avatar, user_id)
source = avatar.url.sub(absolute_base_url + "/", "")
destination = avatar_template(avatar, user_id).sub(absolute_base_url + "/", "")
s3_helper.copy(source, destination)
2015-05-29 12:39:47 -04:00
end
2013-11-27 16:01:41 -05:00
2015-05-29 12:39:47 -04:00
def avatar_template(avatar, user_id)
UserAvatar.external_avatar_url(user_id, avatar.upload_id, avatar.width)
end
def s3_bucket
if SiteSetting.Upload.s3_upload_bucket.blank?
raise Discourse::SiteSettingMissing.new("s3_upload_bucket")
end
SiteSetting.Upload.s3_upload_bucket.downcase
2015-05-29 12:39:47 -04:00
end
def list_missing_uploads(skip_optimized: false)
if SiteSetting.enable_s3_inventory
require "s3_inventory"
S3Inventory.new(s3_helper, :upload).backfill_etags_and_list_missing
S3Inventory.new(s3_helper, :optimized).backfill_etags_and_list_missing unless skip_optimized
else
2019-03-13 05:39:07 -04:00
list_missing(Upload.by_users, "original/")
list_missing(OptimizedImage, "optimized/") unless skip_optimized
end
end
def update_upload_ACL(upload, optimized_images_preloaded: false)
key = get_upload_key(upload)
update_ACL(key, upload.secure?)
# If we do find_each when the images have already been preloaded with
# includes(:optimized_images), then the optimized_images are fetched
# from the database again, negating the preloading if this operation
# is done on a large amount of uploads at once (see Jobs::SyncAclsForUploads)
if optimized_images_preloaded
upload.optimized_images.each do |optimized_image|
update_optimized_image_acl(optimized_image, secure: upload.secure)
end
else
upload.optimized_images.find_each do |optimized_image|
update_optimized_image_acl(optimized_image, secure: upload.secure)
end
end
true
end
def update_optimized_image_acl(optimized_image, secure: false)
optimized_image_key = get_path_for_optimized_image(optimized_image)
optimized_image_key.prepend(File.join(upload_path, "/")) if Rails.configuration.multisite
update_ACL(optimized_image_key, secure)
end
def download_file(upload, destination_path)
s3_helper.download_file(get_upload_key(upload), destination_path)
end
def copy_from(source_path)
local_store = FileStore::LocalStore.new
public_upload_path = File.join(local_store.public_dir, local_store.upload_path)
# The migration to S3 and lots of other code expects files to exist in public/uploads,
# so lets move them there before executing the migration.
if public_upload_path != source_path
if Dir.exist?(public_upload_path)
old_upload_path = "#{public_upload_path}_#{SecureRandom.hex}"
FileUtils.mv(public_upload_path, old_upload_path)
end
end
FileUtils.mkdir_p(File.expand_path("..", public_upload_path))
FileUtils.symlink(source_path, public_upload_path)
FileStore::ToS3Migration.new(
s3_options: FileStore::ToS3Migration.s3_options_from_site_settings,
migrate_to_multisite: Rails.configuration.multisite,
).migrate
ensure
FileUtils.rm(public_upload_path) if File.symlink?(public_upload_path)
FileUtils.mv(old_upload_path, public_upload_path) if old_upload_path
end
def create_multipart(file_name, content_type, metadata: {})
FEATURE: Uppy direct S3 multipart uploads in composer (#14051) This pull request introduces the endpoints required, and the JavaScript functionality in the `ComposerUppyUpload` mixin, for direct S3 multipart uploads. There are four new endpoints in the uploads controller: * `create-multipart.json` - Creates the multipart upload in S3 along with an `ExternalUploadStub` record, storing information about the file in the same way as `generate-presigned-put.json` does for regular direct S3 uploads * `batch-presign-multipart-parts.json` - Takes a list of part numbers and the unique identifier for an `ExternalUploadStub` record, and generates the presigned URLs for those parts if the multipart upload still exists and if the user has permission to access that upload * `complete-multipart.json` - Completes the multipart upload in S3. Needs the full list of part numbers and their associated ETags which are returned when the part is uploaded to the presigned URL above. Only works if the user has permission to access the associated `ExternalUploadStub` record and the multipart upload still exists. After we confirm the upload is complete in S3, we go through the regular `UploadCreator` flow, the same as `complete-external-upload.json`, and promote the temporary upload S3 into a full `Upload` record, moving it to its final destination. * `abort-multipart.json` - Aborts the multipart upload on S3 and destroys the `ExternalUploadStub` record if the user has permission to access that upload. Also added are a few new columns to `ExternalUploadStub`: * multipart - Whether or not this is a multipart upload * external_upload_identifier - The "upload ID" for an S3 multipart upload * filesize - The size of the file when the `create-multipart.json` or `generate-presigned-put.json` is called. This is used for validation. When the user completes a direct S3 upload, either regular or multipart, we take the `filesize` that was captured when the `ExternalUploadStub` was first created and compare it with the final `Content-Length` size of the file where it is stored in S3. Then, if the two do not match, we throw an error, delete the file on S3, and ban the user from uploading files for N (default 5) minutes. This would only happen if the user uploads a different file than what they first specified, or in the case of multipart uploads uploaded larger chunks than needed. This is done to prevent abuse of S3 storage by bad actors. Also included in this PR is an update to vendor/uppy.js. This has been built locally from the latest uppy source at https://github.com/transloadit/uppy/commit/d613b849a6591083f8a0968aa8d66537e231bbcd. This must be done so that I can get my multipart upload changes into Discourse. When the Uppy team cuts a proper release, we can bump the package.json versions instead.
2021-08-24 18:46:54 -04:00
key = temporary_upload_path(file_name)
FEATURE: Direct S3 multipart uploads for backups (#14736) This PR introduces a new `enable_experimental_backup_uploads` site setting (default false and hidden), which when enabled alongside `enable_direct_s3_uploads` will allow for direct S3 multipart uploads of backup .tar.gz files. To make multipart external uploads work with both the S3BackupStore and the S3Store, I've had to move several methods out of S3Store and into S3Helper, including: * presigned_url * create_multipart * abort_multipart * complete_multipart * presign_multipart_part * list_multipart_parts Then, S3Store and S3BackupStore either delegate directly to S3Helper or have their own special methods to call S3Helper for these methods. FileStore.temporary_upload_path has also removed its dependence on upload_path, and can now be used interchangeably between the stores. A similar change was made in the frontend as well, moving the multipart related JS code out of ComposerUppyUpload and into a mixin of its own, so it can also be used by UppyUploadMixin. Some changes to ExternalUploadManager had to be made here as well. The backup direct uploads do not need an Upload record made for them in the database, so they can be moved to their final S3 resting place when completing the multipart upload. This changeset is not perfect; it introduces some special cases in UploadController to handle backups that was previously in BackupController, because UploadController is where the multipart routes are located. A subsequent pull request will pull these routes into a module or some other sharing pattern, along with hooks, so the backup controller and the upload controller (and any future controllers that may need them) can include these routes in a nicer way.
2021-11-10 17:25:31 -05:00
s3_helper.create_multipart(key, content_type, metadata: metadata)
FEATURE: Uppy direct S3 multipart uploads in composer (#14051) This pull request introduces the endpoints required, and the JavaScript functionality in the `ComposerUppyUpload` mixin, for direct S3 multipart uploads. There are four new endpoints in the uploads controller: * `create-multipart.json` - Creates the multipart upload in S3 along with an `ExternalUploadStub` record, storing information about the file in the same way as `generate-presigned-put.json` does for regular direct S3 uploads * `batch-presign-multipart-parts.json` - Takes a list of part numbers and the unique identifier for an `ExternalUploadStub` record, and generates the presigned URLs for those parts if the multipart upload still exists and if the user has permission to access that upload * `complete-multipart.json` - Completes the multipart upload in S3. Needs the full list of part numbers and their associated ETags which are returned when the part is uploaded to the presigned URL above. Only works if the user has permission to access the associated `ExternalUploadStub` record and the multipart upload still exists. After we confirm the upload is complete in S3, we go through the regular `UploadCreator` flow, the same as `complete-external-upload.json`, and promote the temporary upload S3 into a full `Upload` record, moving it to its final destination. * `abort-multipart.json` - Aborts the multipart upload on S3 and destroys the `ExternalUploadStub` record if the user has permission to access that upload. Also added are a few new columns to `ExternalUploadStub`: * multipart - Whether or not this is a multipart upload * external_upload_identifier - The "upload ID" for an S3 multipart upload * filesize - The size of the file when the `create-multipart.json` or `generate-presigned-put.json` is called. This is used for validation. When the user completes a direct S3 upload, either regular or multipart, we take the `filesize` that was captured when the `ExternalUploadStub` was first created and compare it with the final `Content-Length` size of the file where it is stored in S3. Then, if the two do not match, we throw an error, delete the file on S3, and ban the user from uploading files for N (default 5) minutes. This would only happen if the user uploads a different file than what they first specified, or in the case of multipart uploads uploaded larger chunks than needed. This is done to prevent abuse of S3 storage by bad actors. Also included in this PR is an update to vendor/uppy.js. This has been built locally from the latest uppy source at https://github.com/transloadit/uppy/commit/d613b849a6591083f8a0968aa8d66537e231bbcd. This must be done so that I can get my multipart upload changes into Discourse. When the Uppy team cuts a proper release, we can bump the package.json versions instead.
2021-08-24 18:46:54 -04:00
end
private
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
def presigned_get_url(
url,
force_download: false,
filename: false,
expires_in: SiteSetting.s3_presigned_get_url_expires_after_seconds
)
opts = { expires_in: expires_in }
if force_download && filename
opts[:response_content_disposition] = ActionDispatch::Http::ContentDisposition.format(
disposition: "attachment",
filename: filename,
)
end
FEATURE: Initial implementation of direct S3 uploads with uppy and stubs (#13787) This adds a few different things to allow for direct S3 uploads using uppy. **These changes are still not the default.** There are hidden `enable_experimental_image_uploader` and `enable_direct_s3_uploads` settings that must be turned on for any of this code to be used, and even if they are turned on only the User Card Background for the user profile actually uses uppy-image-uploader. A new `ExternalUploadStub` model and database table is introduced in this pull request. This is used to keep track of uploads that are uploaded to a temporary location in S3 with the direct to S3 code, and they are eventually deleted a) when the direct upload is completed and b) after a certain time period of not being used. ### Starting a direct S3 upload When an S3 direct upload is initiated with uppy, we first request a presigned PUT URL from the new `generate-presigned-put` endpoint in `UploadsController`. This generates an S3 key in the `temp` folder inside the correct bucket path, along with any metadata from the clientside (e.g. the SHA1 checksum described below). This will also create an `ExternalUploadStub` and store the details of the temp object key and the file being uploaded. Once the clientside has this URL, uppy will upload the file direct to S3 using the presigned URL. Once the upload is complete we go to the next stage. ### Completing a direct S3 upload Once the upload to S3 is done we call the new `complete-external-upload` route with the unique identifier of the `ExternalUploadStub` created earlier. Only the user who made the stub can complete the external upload. One of two paths is followed via the `ExternalUploadManager`. 1. If the object in S3 is too large (currently 100mb defined by `ExternalUploadManager::DOWNLOAD_LIMIT`) we do not download and generate the SHA1 for that file. Instead we create the `Upload` record via `UploadCreator` and simply copy it to its final destination on S3 then delete the initial temp file. Several modifications to `UploadCreator` have been made to accommodate this. 2. If the object in S3 is small enough, we download it. When the temporary S3 file is downloaded, we compare the SHA1 checksum generated by the browser with the actual SHA1 checksum of the file generated by ruby. The browser SHA1 checksum is stored on the object in S3 with metadata, and is generated via the `UppyChecksum` plugin. Keep in mind that some browsers will not generate this due to compatibility or other issues. We then follow the normal `UploadCreator` path with one exception. To cut down on having to re-upload the file again, if there are no changes (such as resizing etc) to the file in `UploadCreator` we follow the same copy + delete temp path that we do for files that are too large. 3. Finally we return the serialized upload record back to the client There are several errors that could happen that are handled by `UploadsController` as well. Also in this PR is some refactoring of `displayErrorForUpload` to handle both uppy and jquery file uploader errors.
2021-07-27 18:42:25 -04:00
obj = object_from_path(url)
obj.presigned_url(:get, opts)
end
def get_upload_key(upload)
if Rails.configuration.multisite
File.join(upload_path, "/", get_path_for_upload(upload))
else
get_path_for_upload(upload)
end
end
def update_ACL(key, secure)
begin
object_from_path(key).acl.put(
acl: SiteSetting.s3_use_acls ? (secure ? "private" : "public-read") : nil,
)
rescue Aws::S3::Errors::NoSuchKey
Rails.logger.warn("Could not update ACL on upload with key: '#{key}'. Upload is missing.")
end
end
def list_missing(model, prefix)
connection = ActiveRecord::Base.connection.raw_connection
connection.exec("CREATE TEMP TABLE verified_ids(val integer PRIMARY KEY)")
marker = nil
files = s3_helper.list(prefix, marker)
while files.count > 0
verified_ids = []
files.each do |f|
id = model.where("url LIKE '%#{f.key}' AND etag = '#{f.etag}'").pick(:id)
verified_ids << id if id.present?
marker = f.key
end
verified_id_clause =
verified_ids.map { |id| "('#{PG::Connection.escape_string(id.to_s)}')" }.join(",")
connection.exec("INSERT INTO verified_ids VALUES #{verified_id_clause}")
files = s3_helper.list(prefix, marker)
end
missing_uploads =
model.joins("LEFT JOIN verified_ids ON verified_ids.val = id").where(
"verified_ids.val IS NULL",
)
missing_count = missing_uploads.count
if missing_count > 0
missing_uploads.find_each { |upload| puts upload.url }
puts "#{missing_count} of #{model.count} #{model.name.underscore.pluralize} are missing"
end
ensure
2018-11-26 14:45:29 -05:00
connection.exec("DROP TABLE verified_ids") unless connection.nil?
end
end
end