hibernate-orm/reference/en/modules/inheritance_mapping.xml

333 lines
13 KiB
XML
Raw Normal View History

<chapter id="inheritance">
<title>Inheritance Mapping</title>
<sect1 id="inheritance-strategies" revision="2">
<title>The Three Strategies</title>
<para>
Hibernate supports the three basic inheritance mapping strategies.
</para>
<itemizedlist>
<listitem>
<para>
table per class hierarchy
</para>
</listitem>
<listitem>
<para>
table per subclass
</para>
</listitem>
<listitem>
<para>
table per concrete class (some limitations)
</para>
</listitem>
</itemizedlist>
<para>
It is even possible to use different mapping strategies for different
branches of the same inheritance hierarchy, but the same limitations
apply as apply to table-per-concrete class mappings. Hibernate does
not support mixing <literal>&lt;subclass&gt;</literal> mappings and
<literal>&lt;joined-subclass&gt;</literal> mappings inside the same
<literal>&lt;class&gt;</literal> element. However, it is possible to
use a <literal>&lt;join&gt;</literal> element to map this.
</para>
<para>
Suppose we have an interface <literal>Payment</literal>, with implementors
<literal>CreditCardPayment</literal>, <literal>CashPayment</literal>,
<literal>ChequePayment</literal>. The table-per-hierarchy mapping would
look like:
</para>
<programlisting><![CDATA[<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">
...
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">
...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">
...
</subclass>
</class>]]></programlisting>
<para>
Exactly one table is required. There is one big limitation of this
mapping strategy: columns declared by the subclasses may not have
<literal>NOT NULL</literal> constraints.
</para>
<para>
A table-per-subclass mapping would look like:
</para>
<programlisting><![CDATA[<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
...
</joined-subclass>
</class>]]></programlisting>
<para>
Four tables are required. The three subclass tables have primary
key associations to the superclass table (so the relational model
is actually a one-to-one association).
</para>
<para>
Note that Hibernate's implementation of table-per-subclass requires
no discriminator column. Other object/relational mappers use a
different implementation of table-per-subclass which requires a type
discriminator column in the superclass table. The approach taken by
Hibernate is much more difficult to implement but arguably more
correct from a relational point of view.
</para>
<para>
TODO: document usage of join for discriminators in table-per-subclass
</para>
<para>
TODO: document usage of join for mixing inheritance mapping strategies
</para>
<para>
For either of these two mapping strategies, a polymorphic
association to <literal>Payment</literal> is mapped using
<literal>&lt;many-to-one&gt;</literal>.
</para>
<programlisting><![CDATA[<many-to-one name="payment"
column="PAYMENT"
class="Payment"/>]]></programlisting>
<para>The table-per-concrete-class strategy is very different.</para>
<programlisting><![CDATA[<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CREDIT_AMOUNT"/>
...
</class>
<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CASH_AMOUNT"/>
...
</class>
<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</class>]]></programlisting>
<para>
Three tables were required. Notice that nowhere do we
mention the <literal>Payment</literal> interface explicitly.
Instead, we make use of Hibernate's <emphasis>implicit
polymorphism</emphasis>. Also notice that properties of
<literal>Payment</literal> are mapped in each of the
subclasses.
</para>
<para>
In this case, a polymorphic association to <literal>Payment</literal>
is mapped using <literal>&lt;any&gt;</literal>.
</para>
<programlisting><![CDATA[<any name="payment"
meta-type="class"
id-type="long">
<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>
</any>]]></programlisting>
<para>
It would be better if we defined a <literal>UserType</literal>
as the <literal>meta-type</literal>, to handle the mapping from
type discriminator strings to <literal>Payment</literal> subclass.
</para>
<programlisting><![CDATA[<any name="payment"
meta-type="PaymentMetaType"
id-type="long">
<column name="PAYMENT_TYPE"/> <!-- CREDIT, CASH or CHEQUE -->
<column name="PAYMENT_ID"/>
</any>]]></programlisting>
<para>
There is one further thing to notice about this mapping.
Since the subclasses are each mapped in their own
<literal>&lt;class&gt;</literal> element (and since
<literal>Payment</literal> is just an interface), each of
the subclasses could easily be part of another table-per-class
or table-per-subclass inheritance hierarchy! (And you can
still use polymorphic queries against the
<literal>Payment</literal> interface.)
</para>
<programlisting><![CDATA[<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>
</class>
<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="id" type="long" column="TXN_ID">
<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CASH_AMOUNT"/>
...
</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="amount" column="CHEQUE_AMOUNT"/>
...
</joined-subclass>
</class>]]></programlisting>
<para>
Once again, we don't mention <literal>Payment</literal> explicitly. If we
execute a query against the <literal>Payment</literal> interface - for
example, <literal>from Payment</literal> - Hibernate
automatically returns instances of <literal>CreditCardPayment</literal>
(and its subclasses, since they also implement <literal>Payment</literal>),
<literal>CashPayment</literal> and <literal>ChequePayment</literal> but
not instances of <literal>NonelectronicTransaction</literal>.
</para>
<para>
TODO: Document union-subclass for polymorphic-table-per-concrete-class mappings
</para>
</sect1>
<sect1 id="inheritance-limitations">
<title>Limitations</title>
<para>
There are certain limitations to the "implicit polymorphism" approach to
the table-per-concrete-class mapping strategy. There are somewhat less
restrictive limitations to <literal>&lt;union-subclass&gt;</literal>
mappings. (TODO)
</para>
<para>
The following table shows the limitations of table-per-concrete-class
mappings, and of implicit polymorphism, in Hibernate.
</para>
<table frame="topbot">
<title>Features of inheritance mappings</title>
<tgroup cols='8' align='left' colsep='1' rowsep='1'>
<colspec colname='c1' colwidth="1*"/>
<colspec colname='c2' colwidth="1*"/>
<colspec colname='c3' colwidth="1*"/>
<colspec colname='c4' colwidth="1*"/>
<colspec colname='c5' colwidth="1*"/>
<colspec colname='c6' colwidth="1*"/>
<colspec colname='c7' colwidth="1*"/>
<colspec colname='c8' colwidth="1*"/>
<thead>
<row>
<entry>Inheritance strategy</entry>
<entry>Polymorphic many-to-one</entry>
<entry>Polymorphic one-to-one</entry>
<entry>Polymorphic one-to-many</entry>
<entry>Polymorphic many-to-many</entry>
<entry>Polymorphic <literal>load()/get()</literal></entry>
<entry>Polymorphic queries</entry>
<entry>Polymorphic joins</entry>
<entry>Outer join fetching</entry>
</row>
</thead>
<tbody>
<row>
<entry>table-per-class-hierarchy</entry>
<entry><literal>&lt;many-to-one&gt;</literal></entry>
<entry><literal>&lt;one-to-one&gt;</literal></entry>
<entry><literal>&lt;one-to-many&gt;</literal></entry>
<entry><literal>&lt;many-to-many&gt;</literal></entry>
<entry><literal>s.get(Payment.class, id)</literal></entry>
<entry><literal>from Payment p</literal></entry>
<entry><literal>from Order o join o.payment p</literal></entry>
<entry><emphasis>supported</emphasis></entry>
</row>
<row>
<entry>table-per-subclass</entry>
<entry><literal>&lt;many-to-one&gt;</literal></entry>
<entry><literal>&lt;one-to-one&gt;</literal></entry>
<entry><literal>&lt;one-to-many&gt;</literal></entry>
<entry><literal>&lt;many-to-many&gt;</literal></entry>
<entry><literal>s.get(Payment.class, id)</literal></entry>
<entry><literal>from Payment p</literal></entry>
<entry><literal>from Order o join o.payment p</literal></entry>
<entry><emphasis>supported</emphasis></entry>
</row>
<row>
<entry>table-per-concrete-class (implicit polymorphism)</entry>
<entry><literal>&lt;any&gt;</literal></entry>
<entry><emphasis>not supported</emphasis></entry>
<entry><emphasis>not supported</emphasis></entry>
<entry><literal>&lt;many-to-any&gt;</literal></entry>
<entry><emphasis>use a query</emphasis></entry>
<entry><literal>from Payment p</literal></entry>
<entry><emphasis>not supported</emphasis></entry>
<entry><emphasis>not supported</emphasis></entry>
</row>
<row>
<entry>table-per-concrete-class (union-subclass)</entry>
<entry><literal>&lt;many-to-one&gt;</literal></entry>
<entry><literal>&lt;one-to-one&gt;</literal></entry>
<entry><literal>&lt;one-to-many&gt;</literal> (for <literal>inverse="true"</literal> only)</entry>
<entry><literal>&lt;many-to-many&gt;</literal></entry>
<entry><literal>s.get(Payment.class, id)</literal></entry>
<entry><literal>from Payment p</literal></entry>
<entry><literal>from Order o join o.payment p</literal></entry>
<entry><emphasis>supported</emphasis></entry>
</row>
</tbody>
</tgroup>
</table>
</sect1>
</chapter>