HHH-15305 Some dead code elimination and analysis cleanup
This commit is contained in:
parent
3d4cb14627
commit
d64873bde6
|
@ -270,10 +270,7 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
HashEntry<K, V> createNewEntry(K key, int hash, HashEntry<K, V> next, V value);
|
||||
|
||||
/**
|
||||
* Invokes eviction policy algorithm and returns set of evicted entries.
|
||||
* <p>
|
||||
* <p>
|
||||
* Set cannot be null but could possibly be an empty set.
|
||||
* Invokes eviction policy algorithm.
|
||||
*/
|
||||
void execute();
|
||||
|
||||
|
@ -339,11 +336,11 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
private final float batchThresholdFactor;
|
||||
private final Set<HashEntry<K, V>> evicted;
|
||||
|
||||
public LRU(Segment<K, V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
|
||||
LRU(Segment<K, V> s, int capacity, float lf, int maxBatchSize, float batchThresholdFactor) {
|
||||
super( capacity, lf, true );
|
||||
this.segment = s;
|
||||
this.trimDownSize = capacity;
|
||||
this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
|
||||
this.maxBatchQueueSize = Math.min( maxBatchSize, MAX_BATCH_SIZE );
|
||||
this.batchThresholdFactor = batchThresholdFactor;
|
||||
this.accessQueue = new ConcurrentLinkedQueue<>();
|
||||
this.evicted = new HashSet<>();
|
||||
|
@ -425,7 +422,7 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
return Eviction.LRU;
|
||||
}
|
||||
|
||||
protected boolean isAboveThreshold() {
|
||||
private boolean isAboveThreshold() {
|
||||
return size() > trimDownSize;
|
||||
}
|
||||
|
||||
|
@ -825,9 +822,8 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
* Removes this entry from the cache. This operation is not specified in
|
||||
* the paper, which does not account for forced eviction.
|
||||
*/
|
||||
private V remove() {
|
||||
private void remove() {
|
||||
boolean wasHot = ( state == Recency.LIR_RESIDENT );
|
||||
V result = value;
|
||||
LIRSHashEntry<K, V> end = owner != null ? owner.queueEnd() : null;
|
||||
evict();
|
||||
|
||||
|
@ -837,8 +833,6 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
end.migrateToStack();
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -894,7 +888,6 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
* accessed more recently than the last hot entry are present in the stack).
|
||||
* The stack is ordered by recency, with its most recently accessed entry
|
||||
* at the top, and its least recently accessed entry at the bottom.</li>
|
||||
* <p>
|
||||
* <li>The LIRS queue, Q, which enqueues all cold entries for eviction. Cold
|
||||
* entries (by definition in the queue) may be absent from the stack (due to
|
||||
* pruning of the stack). Cold entries are added to the end of the queue
|
||||
|
@ -919,11 +912,11 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
private int hotSize;
|
||||
|
||||
|
||||
public LIRS(Segment<K, V> s, int capacity, int maxBatchSize, float batchThresholdFactor) {
|
||||
LIRS(Segment<K, V> s, int capacity, int maxBatchSize, float batchThresholdFactor) {
|
||||
this.segment = s;
|
||||
this.maximumSize = capacity;
|
||||
this.maximumHotSize = calculateLIRSize( capacity );
|
||||
this.maxBatchQueueSize = maxBatchSize > MAX_BATCH_SIZE ? MAX_BATCH_SIZE : maxBatchSize;
|
||||
this.maxBatchQueueSize = Math.min( maxBatchSize, MAX_BATCH_SIZE );
|
||||
this.batchThresholdFactor = batchThresholdFactor;
|
||||
this.accessQueue = new ConcurrentLinkedQueue<LIRSHashEntry<K, V>>();
|
||||
this.accessQueueSize = new AtomicInteger();
|
||||
|
@ -1168,7 +1161,7 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
}
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
static <K, V> Segment<K, V>[] newArray(int i) {
|
||||
private static <K, V> Segment<K, V>[] newArray(int i) {
|
||||
return new Segment[i];
|
||||
}
|
||||
|
||||
|
@ -1359,68 +1352,6 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
}
|
||||
}
|
||||
|
||||
void rehash() {
|
||||
HashEntry<K, V>[] oldTable = table;
|
||||
int oldCapacity = oldTable.length;
|
||||
if ( oldCapacity >= MAXIMUM_CAPACITY ) {
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reclassify nodes in each list to new Map. Because we are
|
||||
* using power-of-two expansion, the elements from each bin
|
||||
* must either stay at same index, or move with a power of two
|
||||
* offset. We eliminate unnecessary node creation by catching
|
||||
* cases where old nodes can be reused because their next
|
||||
* fields won't change. Statistically, at the default
|
||||
* threshold, only about one-sixth of them need cloning when
|
||||
* a table doubles. The nodes they replace will be garbage
|
||||
* collectable as soon as they are no longer referenced by any
|
||||
* reader thread that may be in the midst of traversing table
|
||||
* right now.
|
||||
*/
|
||||
|
||||
HashEntry<K, V>[] newTable = HashEntry.newArray( oldCapacity << 1 );
|
||||
threshold = (int) ( newTable.length * loadFactor );
|
||||
int sizeMask = newTable.length - 1;
|
||||
for ( int i = 0; i < oldCapacity; i++ ) {
|
||||
// We need to guarantee that any existing reads of old Map can
|
||||
// proceed. So we cannot yet null out each bin.
|
||||
HashEntry<K, V> e = oldTable[i];
|
||||
|
||||
if ( e != null ) {
|
||||
HashEntry<K, V> next = e.next;
|
||||
int idx = e.hash & sizeMask;
|
||||
|
||||
// Single node on list
|
||||
if ( next == null ) {
|
||||
newTable[idx] = e;
|
||||
}
|
||||
else {
|
||||
// Reuse trailing consecutive sequence at same slot
|
||||
HashEntry<K, V> lastRun = e;
|
||||
int lastIdx = idx;
|
||||
for ( HashEntry<K, V> last = next; last != null; last = last.next ) {
|
||||
int k = last.hash & sizeMask;
|
||||
if ( k != lastIdx ) {
|
||||
lastIdx = k;
|
||||
lastRun = last;
|
||||
}
|
||||
}
|
||||
newTable[lastIdx] = lastRun;
|
||||
|
||||
// Clone all remaining nodes
|
||||
for ( HashEntry<K, V> p = e; p != lastRun; p = p.next ) {
|
||||
int k = p.hash & sizeMask;
|
||||
HashEntry<K, V> n = newTable[k];
|
||||
newTable[k] = eviction.createNewEntry( p.key, p.hash, n, p.value );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
table = newTable;
|
||||
}
|
||||
|
||||
/**
|
||||
* Remove; match on key only if value null, else match both.
|
||||
*/
|
||||
|
@ -1535,7 +1466,7 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
concurrencyLevel = Math.max( concurrencyLevel, 1 ); // concurrencyLevel cannot be less than 1
|
||||
|
||||
// minimum two elements per segment
|
||||
if ( capacity < concurrencyLevel * 2 && capacity != 1 ) {
|
||||
if ( capacity < concurrencyLevel << 1 && capacity != 1 ) {
|
||||
throw new IllegalArgumentException( "Maximum capacity has to be at least twice the concurrencyLevel" );
|
||||
}
|
||||
|
||||
|
@ -2004,28 +1935,6 @@ public class BoundedConcurrentHashMap<K, V> extends AbstractMap<K, V>
|
|||
return es != null ? es : ( entrySet = new EntrySet() );
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an enumeration of the keys in this table.
|
||||
*
|
||||
* @return an enumeration of the keys in this table
|
||||
*
|
||||
* @see #keySet()
|
||||
*/
|
||||
public Enumeration<K> keys() {
|
||||
return new KeyIterator();
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an enumeration of the values in this table.
|
||||
*
|
||||
* @return an enumeration of the values in this table
|
||||
*
|
||||
* @see #values()
|
||||
*/
|
||||
public Enumeration<V> elements() {
|
||||
return new ValueIterator();
|
||||
}
|
||||
|
||||
/* ---------------- Iterator Support -------------- */
|
||||
|
||||
abstract class HashIterator {
|
||||
|
|
Loading…
Reference in New Issue