discourse-ai/db/migrate/20250125162658_fix_broken_open_ai_embeddings_config.rb

108 lines
3.4 KiB
Ruby
Raw Permalink Normal View History

# frozen_string_literal: true
class FixBrokenOpenAiEmbeddingsConfig < ActiveRecord::Migration[7.2]
def up
return if fetch_setting("ai_embeddings_selected_model").present?
return if DB.query_single("SELECT COUNT(*) FROM embedding_definitions").first > 0
open_ai_models = %w[text-embedding-3-large text-embedding-3-small text-embedding-ada-002]
current_model = fetch_setting("ai_embeddings_model")
return if !open_ai_models.include?(current_model)
endpoint = fetch_setting("ai_openai_embeddings_url") || "https://api.openai.com/v1/embeddings"
api_key = fetch_setting("ai_openai_api_key")
return if api_key.blank?
attrs = {
display_name: current_model,
url: endpoint,
api_key: api_key,
provider: "open_ai",
}.merge(model_attrs(current_model))
persist_config(attrs)
end
def fetch_setting(name)
DB.query_single(
"SELECT value FROM site_settings WHERE name = :setting_name",
setting_name: name,
).first || ENV["DISCOURSE_#{name&.upcase}"]
end
def model_attrs(model_name)
if model_name == "text-embedding-3-large"
{
dimensions: 2000,
max_sequence_length: 8191,
id: 7,
pg_function: "<=>",
tokenizer_class: "DiscourseAi::Tokenizer::OpenAiTokenizer",
matryoshka_dimensions: true,
provider_params: {
model_name: "text-embedding-3-large",
},
}
elsif model_name == "text-embedding-3-small"
{
dimensions: 1536,
max_sequence_length: 8191,
id: 6,
pg_function: "<=>",
tokenizer_class: "DiscourseAi::Tokenizer::OpenAiTokenizer",
provider_params: {
model_name: "text-embedding-3-small",
},
}
else
{
dimensions: 1536,
max_sequence_length: 8191,
id: 2,
pg_function: "<=>",
tokenizer_class: "DiscourseAi::Tokenizer::OpenAiTokenizer",
provider_params: {
model_name: "text-embedding-ada-002",
},
}
end
end
def persist_config(attrs)
DB.exec(
<<~SQL,
INSERT INTO embedding_definitions (id, display_name, dimensions, max_sequence_length, version, pg_function, provider, tokenizer_class, url, api_key, provider_params, matryoshka_dimensions, created_at, updated_at)
VALUES (:id, :display_name, :dimensions, :max_sequence_length, 1, :pg_function, :provider, :tokenizer_class, :url, :api_key, :provider_params, :matryoshka_dimensions, :now, :now)
SQL
id: attrs[:id],
display_name: attrs[:display_name],
dimensions: attrs[:dimensions],
max_sequence_length: attrs[:max_sequence_length],
pg_function: attrs[:pg_function],
provider: attrs[:provider],
tokenizer_class: attrs[:tokenizer_class],
url: attrs[:url],
api_key: attrs[:api_key],
provider_params: attrs[:provider_params]&.to_json,
matryoshka_dimensions: !!attrs[:matryoshka_dimensions],
now: Time.zone.now,
)
# We hardcoded the ID to match with already generated embeddings. Let's restart the seq to avoid conflicts.
DB.exec(
"ALTER SEQUENCE embedding_definitions_id_seq RESTART WITH :new_seq",
new_seq: attrs[:id].to_i + 1,
)
DB.exec(<<~SQL, new_value: attrs[:id])
INSERT INTO site_settings(name, data_type, value, created_at, updated_at)
VALUES ('ai_embeddings_selected_model', 3, ':new_value', NOW(), NOW())
SQL
end
def down
raise ActiveRecord::IrreversibleMigration
end
end