discourse-ai/lib/summarization/fold_content.rb

163 lines
5.5 KiB
Ruby
Raw Normal View History

# frozen_string_literal: true
module DiscourseAi
module Summarization
# This class offers a generic way of summarizing content from multiple sources using different prompts.
#
# It summarizes large amounts of content by recursively summarizing it in smaller chunks that
# fit the given model context window, finally concatenating the disjoint summaries
# into a final version.
#
class FoldContent
def initialize(bot, strategy, persist_summaries: true)
@bot = bot
@strategy = strategy
@persist_summaries = persist_summaries
end
attr_reader :bot, :strategy
# @param user { User } - User object used for auditing usage.
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
# Note: The block is only called with results of the final summary, not intermediate summaries.
#
# This method doesn't care if we already have an up to date summary. It always regenerate.
#
# @returns { AiSummary } - Resulting summary.
def summarize(user, &on_partial_blk)
truncated_content = content_to_summarize.map { |cts| truncate(cts) }
summary = fold(truncated_content, user, &on_partial_blk)
if persist_summaries
AiSummary.store!(strategy, llm_model, summary, truncated_content, human: user&.human?)
else
AiSummary.new(summarized_text: summary)
end
end
# @returns { AiSummary } - Resulting summary.
#
# Finds a summary matching the target and strategy. Marks it as outdated if the strategy found newer content
def existing_summary
if !defined?(@existing_summary)
summary = AiSummary.find_by(target: strategy.target, summary_type: strategy.type)
if summary
@existing_summary = summary
if summary.original_content_sha != latest_sha ||
content_to_summarize.any? { |cts| cts[:last_version_at] > summary.updated_at }
summary.mark_as_outdated
end
end
end
@existing_summary
end
def delete_cached_summaries!
AiSummary.where(target: strategy.target, summary_type: strategy.type).destroy_all
end
private
attr_reader :persist_summaries
def llm_model
bot.llm.llm_model
end
def content_to_summarize
@targets_data ||= strategy.targets_data
end
def latest_sha
@latest_sha ||= AiSummary.build_sha(content_to_summarize.map { |c| c[:id] }.join)
end
# @param items { Array<Hash> } - Content to summarize. Structure will be: { poster: who wrote the content, id: a way to order content, text: content }
# @param user { User } - User object used for auditing usage.
# @param &on_partial_blk { Block - Optional } - The passed block will get called with the LLM partial response alongside a cancel function.
# Note: The block is only called with results of the final summary, not intermediate summaries.
#
# The summarization algorithm.
# It will summarize as much content summarize given the model's context window. If will prioriotize newer content in case it doesn't fit.
#
# @returns { String } - Resulting summary.
def fold(items, user, &on_partial_blk)
tokenizer = llm_model.tokenizer_class
tokens_left = available_tokens
content_in_window = []
items.each_with_index do |item, idx|
as_text = "(#{item[:id]} #{item[:poster]} said: #{item[:text]} "
if tokenizer.below_limit?(as_text, tokens_left)
content_in_window << item
tokens_left -= tokenizer.size(as_text)
else
break
end
end
context =
DiscourseAi::Personas::BotContext.new(
user: user,
skip_tool_details: true,
feature_name: strategy.feature,
resource_url: "#{Discourse.base_path}/t/-/#{strategy.target.id}",
messages: strategy.as_llm_messages(content_in_window),
)
summary = +""
buffer_blk =
Proc.new do |partial, cancel, _, type|
if type == :structured_output
json_summary_schema_key = bot.persona.response_format&.first.to_h
partial_summary =
partial.read_latest_buffered_chunk[json_summary_schema_key[:key].to_sym]
if partial_summary.present?
summary << partial_summary
on_partial_blk.call(partial_summary, cancel) if on_partial_blk
end
elsif type.blank?
# Assume response is a regular completion.
summary << partial
on_partial_blk.call(partial, cancel) if on_partial_blk
end
end
bot.reply(context, &buffer_blk)
summary
end
def available_tokens
# Reserve tokens for the response and the base prompt
# ~500 words
reserved_tokens = 700
llm_model.max_prompt_tokens - reserved_tokens
end
def truncate(item)
item_content = item[:text].to_s
split_1, split_2 =
[item_content[0, item_content.size / 2], item_content[(item_content.size / 2)..-1]]
truncation_length = 500
tokenizer = llm_model.tokenizer_class
item[:text] = [
tokenizer.truncate(split_1, truncation_length),
tokenizer.truncate(split_2.reverse, truncation_length).reverse,
].join(" ")
item
end
end
end
end