* FEATURE: add inferred concepts system
This commit adds a new inferred concepts system that:
- Creates a model for storing concept labels that can be applied to topics
- Provides AI personas for finding new concepts and matching existing ones
- Adds jobs for generating concepts from popular topics
- Includes a scheduled job that automatically processes engaging topics
* FEATURE: Extend inferred concepts to include posts
* Adds support for concepts to be inferred from and applied to posts
* Replaces daily task with one that handles both topics and posts
* Adds database migration for posts_inferred_concepts join table
* Updates PersonaContext to include inferred concepts
Co-authored-by: Roman Rizzi <rizziromanalejandro@gmail.com>
Co-authored-by: Keegan George <kgeorge13@gmail.com>
The structured output JSON comes embedded inside the API response, which is also a JSON. Since we have to parse the response to process it, any control characters inside the structured output are unescaped into regular characters, leading to invalid JSON and breaking during parsing. This change adds a retry mechanism that escapes
the string again if parsing fails, preventing the parser from breaking on malformed input and working around this issue.
For example:
```
original = '{ "a": "{\\"key\\":\\"value with \\n newline\\"}" }'
JSON.parse(original) => { "a" => "{\"key\":\"value with \n newline\"}" }
# At this point, the inner JSON string contains an actual newline.
```
This change fixes two bugs and adds a safeguard.
The first issue is that the schema Gemini expected differed from the one sent, resulting in 400 errors when performing completions.
The second issue was that creating a new persona won't define a method
for `response_format`. This has to be explicitly defined when we wrap it inside the Persona class. Also, There was a mismatch between the default value and what we stored in the DB. Some parts of the code expected symbols as keys and others as strings.
Finally, we add a safeguard when, even if asked to, the model refuses to reply with a valid JSON. In this case, we are making a best-effort to recover and stream the raw response.
* DEV: Use structured responses for summaries
* Fix system specs
* Make response_format a first class citizen and update endpoints to support it
* Response format can be specified in the persona
* lint
* switch to jsonb and make column nullable
* Reify structured output chunks. Move JSON parsing to the depths of Completion
* Switch to JsonStreamingTracker for partial JSON parsing
This PR adds support for disabling further tool calls by setting tool_choice to :none across all supported LLM providers:
- OpenAI: Uses "none" tool_choice parameter
- Anthropic: Uses {type: "none"} and adds a prefill message to prevent confusion
- Gemini: Sets function_calling_config mode to "NONE"
- AWS Bedrock: Doesn't natively support tool disabling, so adds a prefill message
We previously used to disable tool calls by simply removing tool definitions, but this would cause errors with some providers. This implementation uses the supported method appropriate for each provider while providing a fallback for Bedrock.
Co-authored-by: Natalie Tay <natalie.tay@gmail.com>
* remove stray puts
* cleaner chain breaker for last tool call (works in thinking)
remove unused code
* improve test
---------
Co-authored-by: Natalie Tay <natalie.tay@gmail.com>
thinking models such as Claude 3.7 Thinking and o1 / o3 do not
support top_p or temp.
Previously you would have to carefully remove it from everywhere
by having it be a provider param we now support blanker removing
without forcing people to update automation rules or personas
* FEATURE: full support for Sonnet 3.7
- Adds support for Sonnet 3.7 with reasoning on bedrock and anthropic
- Fixes regression where provider params were not populated
Note. reasoning tokens are hardcoded to minimum of 100 maximum of 65536
* FIX: open ai non reasoning models need to use deprecate max_tokens
This re-implements tool support in DiscourseAi::Completions::Llm #generate
Previously tool support was always returned via XML and it would be the responsibility of the caller to parse XML
New implementation has the endpoints return ToolCall objects.
Additionally this simplifies the Llm endpoint interface and gives it more clarity. Llms must implement
decode, decode_chunk (for streaming)
It is the implementers responsibility to figure out how to decode chunks, base no longer implements. To make this easy we ship a flexible json decoder which is easy to wire up.
Also (new)
Better debugging for PMs, we now have a next / previous button to see all the Llm messages associated with a PM
Token accounting is fixed for vllm (we were not correctly counting tokens)
* FIX: Llm selector / forced tools / search tool
This fixes a few issues:
1. When search was not finding any semantic results we would break the tool
2. Gemin / Anthropic models did not implement forced tools previously despite it being an API option
3. Mechanics around displaying llm selector were not right. If you disabled LLM selector server side persona PM did not work correctly.
4. Disabling native tools for anthropic model moved out of a site setting. This deliberately does not migrate cause this feature is really rare to need now, people who had it set probably did not need it.
5. Updates anthropic model names to latest release
* linting
* fix a couple of tests I missed
* clean up conditional
* DEV: Remove old code now that features rely on LlmModels.
* Hide old settings and migrate persona llm overrides
* Remove shadowing special URL + seeding code. Use srv:// prefix instead.
Native tools do not work well on Opus.
Chain of Thought prompting means it consumes enormous amounts of
tokens and has poor latency.
This commit introduce and XML stripper to remove various chain of
thought XML islands from anthropic prompts when tools are involved.
This mean Opus native tools is now functions (albeit slowly)
From local testing XML just works better now.
Also fixes enum support in Anthropic native tools
This PR consolidates the implements new Anthropic Messages interface for Bedrock Claude endpoints and adds support for the new Claude 3 models (haiku, opus, sonnet).
Key changes:
- Renamed `AnthropicMessages` and `Anthropic` endpoint classes into a single `Anthropic` class (ditto for ClaudeMessages -> Claude)
- Updated `AwsBedrock` endpoints to use the new `/messages` API format for all Claude models
- Added `claude-3-haiku`, `claude-3-opus` and `claude-3-sonnet` model support in both Anthropic and AWS Bedrock endpoints
- Updated specs for the new consolidated endpoints and Claude 3 model support
This refactor removes support for old non messages API which has been deprecated by anthropic
* REFACTOR: Represent generic prompts with an Object.
* Adds a bit more validation for clarity
* Rewrite bot title prompt and fix quirk handling
---------
Co-authored-by: Sam Saffron <sam.saffron@gmail.com>
This PR adds tool support to available LLMs. We'll buffer tool invocations and return them instead of making users of this service parse the response.
It also adds support for conversation context in the generic prompt. It includes bot messages, user messages, and tool invocations, which we'll trim to make sure it doesn't exceed the prompt limit, then translate them to the correct dialect.
Finally, It adds some buffering when reading chunks to handle cases when streaming is extremely slow.:M
Previous to this change we relied on explicit loading for a files in Discourse AI.
This had a few downsides:
- Busywork whenever you add a file (an extra require relative)
- We were not keeping to conventions internally ... some places were OpenAI others are OpenAi
- Autoloader did not work which lead to lots of full application broken reloads when developing.
This moves all of DiscourseAI into a Zeitwerk compatible structure.
It also leaves some minimal amount of manual loading (automation - which is loading into an existing namespace that may or may not be there)
To avoid needing /lib/discourse_ai/... we mount a namespace thus we are able to keep /lib pointed at ::DiscourseAi
Various files were renamed to get around zeitwerk rules and minimize usage of custom inflections
Though we can get custom inflections to work it is not worth it, will require a Discourse core patch which means we create a hard dependency.
* Revert "FIX: We don't need to prepend anthropic. to bedrock models (#308)"
This reverts commit 8a01751991178f7636030eb99e7f75c035707ffd.
* FIX: Bedrock uses slightly different model names
* DEV: One LLM abstraction to rule them all
* REFACTOR: HyDE search uses new LLM abstraction
* REFACTOR: Summarization uses the LLM abstraction
* Updated documentation and made small fixes. Remove Bedrock claude-2 restriction